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Nerd

Parsing based on a proper linguistic formalism

is one of the core research fields in CL and NLP.

It was considered as a monolithic, esoteric and
inward looking field,

largely dissociated from real world application.

M

¢

IT Businessman

The field has matured, ready to be used by
applications.

Integration of linguistic grammar formalisms
with statistical models.

Robust, efficient and

open to eclectic sources of information
other than syntactic ones

Speech Understanding

Speech/Text Retrieval
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VU Predicate: Activate
Arg1: P53
VP Arg2: Bcl-2 Protein
WP

s

shown to dire'ctly activate

the Bcl-2 protein
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Semantic Search arc

_ verh ohject

.S

activate [ Searchl ][Clear ] Heln

F..
3 sadvanced sear .
1 Sentence Retrieval System
Fesults 150 for p53 activate :Show next »Show query . . .
. Using Semantic Representatic
| 1. BEMID 19446548 woma MEDIE
t The molecules activated by induce apoptosis |, cell cycle arrest  and DMA repair 10 CORNSENE genome |
- 2. PMID 15273740 s
=3
i In this report | we demonstraqad that human AMID gene promoter was activated by in reporter gene agEay PaSSive
..

20844 xmL

4. EMID 15105427 sl

Electrophoretic mobility shift assays reveal that both transcription factors are capable of hinding to putative consensus sites | and luciferase reporter
assays reveal that E2ZF1 and can activate transcription from the SIVA promoter

» 5. BMID 15247038 s
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Although the role of the nuclear factor-kappa B { NF-kappa B ) signaling cascade is crucial in JCAM-1 activation |, we have shown that
directly activates the expression of ICAM-1 in an MF-kappa B-independent manner .

6. PMID: 15021899 axm

Because the MDM2 gene is transcriptionally activated by , it forms part of an autoregulatory feedback loop that directly links the transcriptiona
L. activity of pb3 with its degradation .

|~ o BMID: 15064739 s
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— See whal causes cancer?

‘emantic Search Keyword Search GCL Search
subject verh object

pa3 activate
vanced search

Show 80 results v

Output format @ sentence Oarticle Otable
Keywords
Modifier§
Base for
Ontology
Category

e verhb [| object [| keyword
[ subject [| verb [| object

subject | any ¥ | ohject | any ~

MEDNE 15 & demo system presented by Tsuli Laborator

=earchl ] [Clear ] Help

FEEE

EEE

Sllts 150 for pb3 activate »Show next »Show query

2582 seconds (5£.37% finished

PRAD: 11212267 woma

KAIN/CDEZ has been shown to be a metastasis suppressoar for several human cancers | and a recent study revealed that wild-type tumor suppressor can

directly activate KAIN/CDB2 gene expression .
o BPMID: 11162500 e

However |, in an in witro transcription assay with partially purified basal transcription factors | only partially activated transcription from the same binding site

and required PABAZT for full activation .
L PRATY TN5 7139240 e
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Ay :Ej http:ffhactem? me.man.ac.uk A medie zearch.cei®eearch_tvpessemantic_searchizubject=pE3&verb=activate&baze_for m=verb&ontalogy= W a izgh U
LdLEYyUTY subyject| ANy ¥ | object | ANy ~ Aelp
sults 1-11 for p53 activate »Show query 10067 seconds {100.00% finished

Pl 11483599 s

WWe demonstrated th did not @herthe MEF1 promoter or the endogenous gene
' PMID 120719172 s

However | luciferase constructs driven by the HDACS promater containing three to six potential binding sit@t activated by ot was the expression
of HDACS mREMNA induced by pa3-activating agents .

- PMID: 12048243 s
This activation occurred h a phosph ion-independent m@vnlwng direct binding of GSK3beta to pa3 |, which was confined ta the nucleus where p53 i

localized |, and mutated _ [ R1¥a bound but did not activate 5 beta

| PMID 14557665 s

Thus | it is likely that the E1B 55-kDa protein sequesters Daxx and p53 in specific nuclear locations | where can not acti@riptiun
o EMAID 14517211 oy
The DDATHF stal:nhzed - hnund to the p21 prnmnter |n vitro and in vivo but du:i ot at:twate h|5tnn@iun over the pa3 binding sites in the p21 pramoter

L PMID: 8632013 womr

Twi monaoclanal antibodies to the N terminus nf (E€Ab1801 and DO-1 , dao not activate t@ﬂ« binding function of p53  but can pratect the pa3 wild-
type conformation at 37 degrees C .

PrAID: 9159467 woa

RMA polymerase |l transcriptional activators | like GALL | VP16 |:|r ,fused to GALA DN@Dmain , did not activate the UAS [ G PSNRE gene

L PMWID: 9360984 waa
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HIESIE

o HPSG = Lexical entries + Grammar rules

o lLexical entries: syntactic and semantic
escriptions of word-specific behaviors

o c.f. Enju grammar (Miyao et al 2004) has 3797
lexical entries for 10,536 words

o Grammar rules: non-word-specific syntactic
and semantic configurations

o c.f. Enju grammar has 12 grammar rules
» 4
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_ HEAD noun
SUBJ ()
COMPS ¢

Mary

' HEAD  verd
SUBJ (HE

{ HEAD noun)

COMPS ¢
loved

_HEAD noun
SUBJ <>
COMP)

—John




HPSGIREAESING

propagation of information

_ _H EAD noun

_ HEAD noun verh
SUBJ O SUBJ XXHEAD noun) SUBJ <>
COMPS ¢ COMPS <{XHEAD nounp}|| COMP{)

Mary loved ~ John



HPSIEGEalSING

" HEAD _verh
SUBJ | {HEAD noun)
COMPS—O
CHEAD noun | | HEAD verb |[HEAD noun
SUBJ () SuUBJ |{H n SUBJ <>
COMPS O COMP {HEAD nounp || COMP{)
Mary loved John




sIFSIC Peirsir

o A parse tree is derived by applying

grammar rules recursively

' HEAD verb
SUBJ ()
COMPS ¢

2 /
3.~ | HEAD _erh |

2 SUBJ I#HEAD noun)
COMPS O

HE 2’(, __HEAD noun
SURYJ |(HEAD un) SUBJ <>

COMPSEY HEAD nounpb|| COMP{)
loved John

_ HEAD noun
SUBJ ()
COMPS ¢

Mary




a complex

COMPS <>
SPR <>

HEAD noun

» An example of {SUBJ 2

|

SLASH <[2]

SyntaCtIC tree HEAD det QESS) noun
B <>
» SLASH, REL m[%‘éﬁpéij ones <>
features the . )
explain non- | M
local glglgﬂp% <> (|'\:>8|'_VIPS <>
. < > < >
dependencies o ] ]
* WH SUB) <5
COMPS
moyemen’g, | SUASH <21
topicalization,

I HEAD
relative [3],[25’35’ - J o8y <42
QEuses COMPS < > COMPS < >

CHARGE e
Arg1 Unknown [EILEJS? jfél; J e by
Arg2 Price COMPS <[4]>
Arg3 We

were

charged

SUBJ <[3l>
COMPS <>
>




HPSGHE2ISInG

o An example of The information is mostly written in a

d COmpleX lexical entry LELEUERIICRIRIEE
SyntaCtiC tree - passive in relative clause construction -

to the predicate argument structure

o SLASH, REL 2| 2&iks > oo ~

PR <[{]>

features the - R
eXp a|n NOoN- HEAD noun HEAD verb
| SUBJ SUBJ \
local A ggypgo %8{"P§><> \
. < > <
dependencies N ies | |
o WH H o verb ] \\
<>
movement, COMPS = \
topicalization, = \
. HEAD HEAD verb \
relative E,[SUB P J SUBJ <3> \
clauses COMPS <>
WA CHARGE e
e . Arg1 Unknown (E‘Eé‘? o }
'- . Arg2 Price < >
. Arg3 We were charged




o HPSG parsing (Pollard & Sag 1994)

o Mathematically well-defined with sophisticated
constraint-based system

o Linguistically justified
o Deep syntactic grammar that provides
semantic analysis

10 years ago

nrealistic solutions

for real-world te
let alone real world spee







Bliiiletilie 1 FPS G Parsirig

o Difficulty of developing a broad-coverage HPSG
grammar

o Difficulty of disambiguation

o No treebank for training an HPSG grammar
o No probabilistic model for HPSG

o Efficiency
o Very slow : CFG filtering, Efficient search, Feature Forest

| - : _




Pifficulties iniE RSEN=2ISIe

e Difficulty of developing a broad-coverage HPSG
grammar

o Difficulty of disambiguation

o No treebank for training an HPSG grammar
o No probabilistic model for HPSG

o Efficiency
o Very slow : CFG filtering, Efficient search, Feature Forest

W




Grammar With Ble2ENeeYEICHE

o Treebank for Grammar development and
evaluation

o Treebank grammar
» ENnju (Miyao et al. 2004) HPSG Grammar

- - i

o Treebank development
o Redwood (Oepen et al. 2002)
w @ HinokKi (Bond et al. 2004)

" erenees ‘ -
";(u'T}’Moﬂl“ \
HPSG Grammar




CirzlpglagleldWiin Srozic] Coverzge

o Treebank for Grammar development and
evaluation

o Tre(Rule Application Al
° Enju (gt al. 2004) HPSG Grammar

vt | oot |

o Tr nk developmant
eebank d r‘Lexical Knowledge Acquisition

o Redwood (Oepen et ai. zuuz)
o Hinoki (Bond et al. 2004)

4 Sentences ‘ -
HPSG Grammar




Perormance oirseman!

Penn Treebank GENIA
F-Value (PArelations) 87.4% 86.4%
Sentence Precison 39.2% 31.8%
Processing Time 0.68sec 1.00sec




Pifficulties iniE RSEN=2ISIe

o Difficulty of developing a broad-coverage HPSG
grammar

e Difficulty of disambiguation

e No treebank for training an HPSG grammar
e No probabilistic model for HPSG

o Efficiency
o Very slow : CFG filtering, Efficient search, Feature Forest

W




ProabilisticiVioEe) l.

o Probabilistic model

o Log-linear model for unification-based

grammars (Abney 1997, Johnson et al. 1999, Riezler et al. 2000,

Miyao et al. 2003, Malouf and van Noord 2004, Kaplan et al. 2004, Miyao
and Tsujii 2005)

Statistics (Model Parameters)




Prokaeiisie HPS“

p (T ‘ . ' ) W —«Ablue eyes girl with white hair and skin walked”




ProbabilisticiPSIE

p (T ‘ W) W = “A blue eyes girl with white hair and skin walked”

AAAA A

All possible parse trees derived from w with a grammar

e

p(T3|w) is the probability of selecting 73 from 71,
12, ..., and Tn.



Prolpapilisichs

o Log-linear model for unification-based grammars

(Abney 1997, Johnson et al. 1999, Riezler et al. 2000, Miyao et al. 2003,
Malouf and van Noord 2004, Kaplan et al. 2004, Miyao and Tsuijii 2005)

o Input: sentence w
o w=w,/P, w,/P,, wi/P;,....w

n/Pn
o Output: parse tree T \ '\

word POS

feature function

a weight for a feature function
normalization factor




Beleibiriezir 1Vioclel

ViaximUumNER GV CEE)

p (T ‘ W) W = “A blue eyes girl with white hair and skin walked”

All parse trees derived from w with a grammar

AAAA A

fI(TH=1  fI(T2)=1 fI(T3)=1 fI(T4)=I F1(Tn)=0
2ATH=0  f2(12)=1 [fAT3)=1 f2T4)=0 S2(Tn)=1
B(TH=0  BT2=1 (T3)=0 B(T4)=I (Tn)=0

(TH=1  fin(T2)=1 fin(T3)=0 fin(Td)=1I fn(Tn)=0

feature functions are indicators that indicate the
properties that the parse tree has.



HoJel=Elpi=ir Vlocle)
ViaximumiERteEyAV CEE)

p (T ‘ W) W = “A blue eyes girl with white hair and skin walked”

All parse trees derived from w with a grammar
e

A A A A A
A 1

L p(T |W)=Eexp(zﬂufu(T )
/4 u

OUL)=U  JaUZ)=1 JIUI)=U I U4)=1 JILn)=u

(TH=1  fin(T2)=1 fin(T3)=0 fin(Td)=1I fn(Tn)=0

. ‘P Z
‘ f‘.‘ feature functions are indicators that indicate the

properties that the parse tree has.
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Example ofi FeattEsagn: il
CAT: verb
head -comp-rule,1,0,1, VP, has, VBZ, ,
fe {SUBCAT . < VP >}
B CAT: verb
1, VP, come, VBN,
/ {SUBCAT . <NP J
CAT: verb
SUBCAT: <>
CAT: verb
{SUBCAT: <NP>}
4 | CAT: noun - | CAT: verb CAT: verb
UBCAT<> . | SUBCAT: <VP> SUBCAT: <NP>
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Example ol Feattiiesuin

HPSG

CAT: verb
SUBCAT: < VP

verb
D >

head - comp-rule,1,0,], VP, has, VBZ,

AT:
SUBSAT :

, VP, ¢ ymeg|VB

)

CAT: verb
SUBCAT: <NP>

{CAT: verb

CAT: nou

UBCAT<> SUBCAT:<VP>




Periormanceioins

Peirgar

SIIEE

Penn Treebank

GENIA

Processing Time

F-Value (PArelations) 87.4% 86.4%
Sentence Precison 39.2% 31.8%
0.68sec 1.00sec

i k’q“‘ -

32



Diffcultiesiini= SIS

o Difficulty of developing a broad-coverage HPSG
grammar

o Difficulty of disambiguation

o No treebank for training an HPSG grammar
o No probabilistic model for HPSG

e Efficiency
e Very slow : CFG filtering, Efficient search, Feature Forest

W




fex_fempliate

LEXKEME_MAME Trgl/ Puynf

CORG

extracted for

LEXICAL_RULES| hd singuizr2rd werh rule

i fnsEg wiors

tlni

i fpsg synsern

furagfaca)
Fag cal

CAT

HEAD

SUBJ

fhpsg werh

AGR Apsg 3sg

ADJ Bpag minus

WEORM vert fin

ALK g hawve

PASSINE hpsag minus

TEMSE tense_preseni

RELATIVE fhpnag binany

MODL fpsg nooca)

| MODR fpsg noloca)
SWRISSITL_CONS

hpsg sYnsem

CAT
bd | LOCAL

i @np.s_g_ Ioca)
fag_cal

HEAD

WO

INPUT string
SURFACE string
BASE "hawve'
INPUT_POS sting
Pos e
BASE_POS shing
FOSITION intager |

troin

hpsg noun

AGR hpsg agreement
ADJ hpsg Bihahy
SPECIFIED hpsg_ binans
MODL hpag haioca)
MODR Apag_noloca)

COMNT

L tl sknaer_ni

r R A =1aa B atal a b

SLIBJ synaern_ ni
COMPS svnearm_ni
COMNJ synsam_ni

L WH fpag binane

fag con
HOOK| retation
RELS refation s
MEG message

| MONLOGAL Apsg_nonioca

Wolra

INPLT "has'
SURFACE "has'
BASE "have'
INFUT_FOS|i]
Fosi
BASE_POS V&'

=l

| FOSITION 3

L#M_SPEC

i hpsg o

I spec
DATIVE Rpag minus

MMV integer

M_PASSIVE infeger

L MW integer
fyasg synsem

fypsg ool

HEAD

SUEBJ

INSERT hpag minua

hpag_cal

hnsg verh

AGR hpsg agreer
AL hpsg minus
YEORM verth bhas:
AL gL have
FASSIVE hpsg
TEMSE hpsg tens
RELATIVE fpag £
MODL Apsg hofoc

| MODR hpsg_noioc

SYNSEIT_CONS
Rpsg sy nssrr
Bl

ho| LOCAL

CAT

COm




Chanipeals

HEAD verb
SUBJ <NP>
COMPS < >

AEAlL

HEAD verb >
SUBJ <NP>

. a— _
HEAD noun | [ HEAD verb |
suBJ <> [, 2 SUBJ <NP> s
COMPS < > COMPS <NP>

A

: n
HEAD noun
SUBJ <>
COMPS < >




Charipars =

l I fob = Dmﬂ HEAD verb

SUBJ <NP>

lPrnb =0.075 \ COMPS<>
\\

LEAR m b
HEADgerb K > HEAD verb

SUgJ <>

HVPS < > -g Feature Forest Model
L > (Miyao and Tsuijii, 2001&2008)

- /A | =
nk == n
HEAD noun } S HEAD verb | HEAD noun }
SUBJ <> |5 SUBJ <NP> ps SUBJ <> |5
COMPS < > COMPS <NP> COMPS < >

m fl‘ ' \ loved John



Seam SearchraneNieTeuVENVICERITE

Niglegsliyzr 2002

70%

Iterative + Global
thresholding

Local thresholding

(hum+width)

Local thresholding +
Global thresholding

150

390

930 7150

Average parsing time (ms)

950

37




Blisitglotitienl of Pelrsiric
SenteRcENIENE

... NONe

trre for

arsing)

100000000

10000000 |

1000000
100000
10000
1000

Parsing time (ms)

1

100 |
10 |

Sentence length (words)

15




Perormance oinsema

Penn Treebank GENIA
Coverage 99.7% 99.2%
F-Value (PArelations) 87.4% 86.4%
Sentence Precison 39.2% 31.8%

Processing Time

39



Secalanility, oiniVNice!s

Target Corpus: MEDLINE ¢

The number of papers 14,792,890
The number of abstracts 7,434,879
The number of sentences 70,815,480
The number of words 1.418,949,650
Compressed data size 3.2GB
Un&ompressed data size 10GB

40




Siezllzl9lAei Tl Tools - MIED|=
Target Corpus: MEDLINE cory

The number of papers 14,792,890

The number of abstracts 434,879

The number of

The number of

Compressed data siz

Ur&ompressed data size




siezl 19l o TV Tools - VIED|=

Target Corpus: MEDLINE cory

The number of papers

14,792,890

The number of abstracts

The number of

The number of

Com \O/million

is, abou‘r 2

434,879

seconds, that
23




INIglelnsliyzl 2008, itz 2004

o Solution

o The entire MEDLINE were parsed by distributed
PC clusters consisting of 340 CPUs

o Parallel processing was managed by grid platform
GXP

o Experiments
o The entire MEDLINE was parsed in 8 days

o Output

e Syntactic parse trees and predicate argument
structures in XML format

| 4» The data sizes of compressed/uncompressed

.‘ﬁx&Vutput were 42 .5GB/260GB.
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Selection eiREEXEEln

o Reference distribution of unigram lexical entry
selection (Miyao & Tsuijii 2005)

o Filtering unlikely lexical entries during parameter
estimation

p(T|W) = py(T | W) %exp@ A f.(T))
'\

o Unigram lexical entry selection

lexical entry
v n L
P (T W)= Hp(li |w,, F)
i=1 \\
word POS

reference distribution




Chaninez **[r"fj“'“ﬂ

s

m Prob = 0.003 } HEAD verb

SUBJ <NP>
m Prob = 0075 COMPS <>
B S A _ Selection of

Lexical Entries
Is crucial.

nl L N, L /4 T n
HEAD noun S HEAD verb | HEAD noun
SUBJ <> |5 SUBJ <NP> ps SUBJ <>
COMPS < > COMPS <NP> COMPS < >

| |
‘ loveai John




Selection oRexEa N=RnEs
gging

o Reference distribution of unigram lexical entry
selection (Miyao & Tsuijii 2005)

o Filtering unlikely lexical entries during parameter
estimation

P(T |W) = (T | W) exp(2 4, £,(T))
»\
e Super-tagger I

.;]jsuptag-““)_ml ‘W—l’w W 1—2’}?—1’ 197+ z+2)

reference distribution



SUPEr-tag@inERENENESIS

HEAD noun
* An example of (S;L(J)?AJpg Sl Mapping of a syntactic tree
d Complex SPR < > - passive in a relative clause-

to the predicate argument structure
SUBJ <>

syntactic tree T eas
o SLASH, REL[SUB" S J

COMPS <> F"{"f%:" TS
features the Pl - R
<> <>
Oca . SPR <[1]> _REL < \\
dependencies prices ﬁfk
o WH a08) <2
COMPS

movement, SLASH <[
topicalization,

. HEAD
s AR

<>

we
HEAD verb

[SUBJ <[3> }
COMPS <{4]>

were charged




DEeep ParsemwiiisSupEEEEEie

Accuracy of predicate-argument dependencies and

parsing time (Section 23 = 100 words, Gold POS)

(=n-gram ref, slow but
accurate)

Model Precision Recall F-Score Avg. Time
(ms/sentence)

Miyao & Tsujii (2005) 87.3% 86.5% 86.9% 604

(=unigram ref)

Ninomiya et al. (20006) 89.5% 88.6% 89.0% 152

(=n-gram muilti)

Ninomiya et al.1 (2007) | 89.8% 89.3% 89.5% 234

(=n-gram ref, fast and

accurate)

Ninomiya et al. 2 (2007) | 90.3% 89.6% 89.8% 1379




IntegrateaiViodeiNVSESIEUEE RV P6EE]

p(T|w)=|p,,. (T w)é exp(Y 4,1, (1))

! []
yy

Super-Tagger E» Deterministic Parser




SYSIEMNOVEIVIEW,
\ViatstuzakipetralmzZoly

input sentence — — —
Mary loved John HEAD noun HEAD verb HEAD noun
SUBJ <> SUBJ <NP> SUBJ <>
‘ COMPS < > COMPS <NP>] |COMPS < >
| |
Enumeration of Ma loved John
Supertagger assignments

Deterministic
disambiguation

<

nk f !
nge E
HEAD noun b [ E HEAD verb

SUBJ <> SUBJ <NP>
LU = COMPS <NP>

COMPS <>

Mary loved John

ary loved John



EnumaratenioiENIENIES
parsable EEESSIG nm_\ntg

Derived from the HPSG grammar

_ Enumeration of the [Torisawa
Supertaggmg highest-prob_ ‘ Deterministic
result LE sequences CFG-filter Parser
Prob.

e 1 61 L
/12» EED
.




HEAD noun
SUBJ <>
COMPS <>

HEAD verb
SUBJ <NP>
COMPS <NP>

HEAD noun
SUBJ <>
COMPS <>

Mary

loved

John




HEAD noun
SUBJ <>
COMPS <>

argmax F(a, S, Q) = SHIFT

HEAD verb
SUBJ <NP>
COMPS <NP>

HEAD noun
SUBJ <>
COMPS <>

loved

John




argmax F(a, S, Q) = SHIFT

HEAD noun HEAD verb
SUBJ <> SUBJ <NP>
COMPS < > COMPS <NP>

HEAD noun
SUBJ <>
COMPS <>

Mary loved John




HEAD noun
SUBJ <>
COMPS <>

HEAD verb
SUBJ <[1]NP>
COMPS <>

HEAD verb HEAD noun
SUBJ <[1]> SUBJ <>
COMPS <NP> COMPS <>
[ [
loved John




EXPEmIEn -

LP(%) |LR(%) [F1(%) |Avg. time
Staged/Deterministic 86.93 |186.47 |86.70 | 30ms/snt
model
Previous method 1 87.35 |86.29 |[86.81 |183ms/snt
(Supertagger+ChartParser)
Previous method 2 84.96 [84.25 84.60 |674ms/snt

_(Unigram + ChartParser)

., 4+ 6 times faster
%20 times faster than the initial model




oclals

ation

o Low parsing accuracy for different domains

Ex.) Enju: trained on the Penn Treebank
o Penn Treebank: 89.81 (F-score)
o GENIA* (biomedical domain): 86.39 (F-score)

» Re-training a probabilistic model on the domain

o Small training data for the target domain

o Penn Treebank:. 39,832 sentences
o GENIA™ 10,848 sentences (>> other domains)

* Kim et al., 1998



Adaptation WithNseierencENpISiiismiielg

m——

1
pE(t|W) :Z_leex(li |Wi).qSyn(t|l)9

Z, = Z leex(li |Wi)'qsyn(t 1)

tel' (W) w,ew

Feature function ‘

) Feature weight ‘

|
pu(t]s)= 7 po(t|s) eXp[Z Oigi(t | s)J

Original model



FerioflElgles of Aclziatziiion Vodels
rlelrzl 2007

Corpus size vs. accuracy Training time vs. accuracy

©
o 90 90
O
P
= 89 89
>
@)
(©
5 88 88
®)
@)
©
o 87 87
=
P
o
0 2000 4000 6000 8000 0 20000
+ # of GENIA training sentences Training time (sec.)

12




FaiofpElnles i Acdzigiziiiorn Models
rlelrel 2007
= —i

Corpus size vs. accuracy Training time vs. accuracy

(o
o

Py..

Original pg(t|s) for the Penn Treebank:

oo
(@

89.81, the training time is 10 times less
than the naive model.

oo
oo

oo
~

oo
o

Parsing accuracy (F-score)

0 2000 4000 6000 8000 Baseline: Original p(f|s) for the GENIA,
» # of GENIA training sentences i

[ Bwde v Fev  ous o]



Adaptation WithNseierencENpISiiismiielg

pe(tiw)= leex (Z; 1 w;)- 9 syn (¢]1), Independent of

w W; EW the or|g|nal model

= 2. [ paiw) g,

tel' (W) w,ew

eature functiox

1 ) t -
pu(t|s)= B pi(t|s) exp[z 0gi(t|s) J \keature weight’

Original model



NER ana KnowiedeEsE!

(’\5

Isgd Processirlg

PDeéletion ) Inhibition Binding
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Thankeoeus

The field has matured, ready to be used by
applications.

Integration of linguistic grammar formalisms
with statistical models.

Robust, efficient and

open to eclectic sources of information
other than syntactic ones

Speech Understanding

Speech/Text Retrieval
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