
PHONE-INFORMED REFINEMENT OF SYNTHESIZED MEL SPECTROGRAM
FOR DATA AUGMENTATION IN SPEECH RECOGNITION

Sei Ueno, Tatsuya Kawahara

Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
ueno@sap.ist.i.kyoto-u.ac.jp

ABSTRACT

While recent end-to-end automatic speech recognition (ASR) mod-
els achieve high performance, we need to prepare an abundant
amount of training data, which is a barrier to apply them to a specific
domain. To mitigate the lack of training data, text-to-speech (TTS)
systems have been utilized to leverage text-only data to efficiently
generate paired data for training the ASR model. The widely-used
procedure first generates a Mel spectrogram from text data, then
converts it into a waveform, and converts it again to a Mel spectro-
gram. The vocoder is often used to alleviate the difference between
real and synthesized speech, but it requires a huge amount of run-
time. In this work, we propose a phone-informed post-processing
network that refines Mel spectrograms without using the vocoder.
The proposed network consumes not only Mel spectrograms but also
text information to use phone sequence information for refinement.
Experimental evaluations demonstrate that the proposed network
achieves better WERs than the vocoder network in an English do-
main adaptation task (LibriSpeech to TED-LIUM 2; read speech to
spontaneous speech) in a much smaller amount of data generation
time. It is also shown the use of phone information is critical for the
improvement. We also confirm the effect of the proposed model in
a Japanese domain adaptation task (CSJ-SPS to CSJ-APS; everyday
topic to academic topic).

Index Terms— Speech recognition, domain adaptation, speech
synthesis, FastSpeech 2, Transformer

1. INTRODUCTION

The automatic speech recognition (ASR) models have recently
achieved high performance because of the progress of deep learn-
ing. In particular, end-to-end models that integrate the acoustic and
language models have realized better performance than the con-
ventional hybrid systems. Among the end-to-end ASR models, the
connectionist temporal classification (CTC)-based model [1], the
attention-based encoder-decoder model [2], recurrent neural net-
work transducer (RNN-T) [3], and transformer-based models [4, 5]
have been investigated. However, we need a huge amount of paired
speech and transcription data for training these models. It is not easy
to prepare the paired-data for adapting to a specific domain.

On the other hand, it is often the case there are a huge amount
of text-only data for the target domain. To compensate training data,
many works leveraging text-only data have been pursued. In this
work, we focus on an approach which generates paired data by a
text-to-speech (TTS) system and then train an ASR model using real
and generated data for data augmentations [6, 7, 8, 9, 10, 11, 12]
or domain adaptation [13, 14, 15, 16]. This approach uses a text-
to-mel system such as Tacotron 2 [17] to generate a Mel spectro-
gram from a text sequence. After generating Mel spectrograms,

there are two major ways of data generation for ASR. One is to
directly use the synthesized Mel spectrograms without any post-
processing [8, 9, 10, 13, 14]. The other uses a vocoder to convert
the Mel spectrogram into a waveform [6, 7, 11, 12, 15, 16], which
is again converted into a Mel spectrogram used for the ASR input.
The neural network-based vocoder is generally used since it deliv-
ers better performance than the conventional vocoders such as the
Griffin-Lim algorithm [11]. The benefit of using the vocoder is that
we can design ASR and TTS models independently since we can
use an optimal setting for Mel spectrograms for respective systems.
Moreover, the vocoder improves the quality of data and performance
of augmentation compared with direct use of Mel spectrograms. In
this way, the vocoder is regarded as a post-processing network for
enhancing Mel spectrogram.

However, converting to a waveform needs an extra time for
data augmentation. Moreover, synthesizing waveforms takes a huge
amount of time because the ASR system needs a huge amount of
training data, although it does not need waveforms. In this paper,
we propose a phone-informed post-processing network to refine the
synthesized Mel spectrograms. The proposed network focuses on
filling the gap between real and synthesized Mel spectrograms and
is used instead of the vocoder. Refinement on the Mel spectrogram
takes less inference time than the vocoder synthesizing waveforms.
For improved enhancement, we use the text information, specifically
phone information of the speech, which is readily available in the
TTS task.

In the rest of the paper, we first review related work in Section 2.
Section 3 explains the proposed post-processing network. Experi-
mental evaluations using two datasets are presented in Section 4.

2. RELATED WORK

2.1. Text-to-mel network and vocoder

We briefly review the neural network-based TTS model. It gen-
erally has two separated networks: a text-to-mel network and a
vocoder (mel-to-waveform) network. The text-to-mel network gen-
erates a Mel spectrogram from a phone (or character) sequence.
For this network, several models such as Tacotron 2 [17] and
the Transformer-based model [18] have been investigated. These
models generate a high-quality speech with a much simpler archi-
tecture compared with the conventional statistical models. Most
recently, non-autoregressive networks have been proposed such as
FastSpeech-1,2 [19, 20] and Parallel Tacotron-1,2 [21, 22]. In this
work, we use the FastSpeech 2-based model because of the fast
generation. For a non-autoregressive generation, the FastSpeech 2
model first predicts the duration of the Mel spectrogram correspond-
ing to each phone in the variance adaptor and extends the phone
embedding information for the duration of the segment. The model
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then predicts the additional acoustic information such as F0 and
energy, which are added to the extended phone information. These
features are fed into the decoder to generate a Mel spectrogram.

On the other hand, the vocoder (mel-to-waveform) network con-
verts the generated Mel spectrogram into a waveform. The models
such as LPCNet [23] and MelGAN [24] are attractive for fast infer-
ence. However, the inference still needs much time since the wave-
form has many samples and often becomes a very long sequence.

2.2. Data generation for ASR using TTS

Many works have investigated the efficient use of generated speech
for data augmentation and domain adaptation of ASR systems.
Mimura et al. [13] fixed the ASR acoustic encoder in training with
the synthesized data. Wang et al. [9, 10] investigated consistency
regularization for TTS incorporated with ASR. Zheng et al. [15]
introduced a loss for regularization of the decoder when the ASR
model was finetuned for out-of-vocabulary words. Fazel et al. [12]
investigated a multi-stage training strategy by combining weighted
multi-style training, data augmentation, encoder freezing, and pa-
rameter regularization. Chen et al. [8] introduced a generative
adversarial network (GAN)-based model for the pre-trained TTS
and ASR to increase the acoustic diversity in the synthesized data.
Kurata et al. [16] introduced a mapping network before the ASR
encoder to convert the acoustic features of the synthesized audio to
those of the target domain, which is similar to this study but did not
use the phone information.

3. PROPOSED METHOD

3.1. Baseline architecture of data generation for ASR

For data augmentation for ASR, we compose a multi-speaker text-
to-mel network, which is generally used [6, 7, 12, 14]. There are
some options for the multi-speaker embeddings such as speaker
IDs [14], variational autoencoder (VAE) latent variables [6], pre-
trained speaker verification model [12], and a global style token
(GST) [7]. In this work, we use a speaker ID embedding.

3.2. Phone-informed post-processing network for ASR

In the standard TTS task, the role of the vocoder is to generate a
waveform that people can hear and evaluate. On the other hand,
in the data augmentation task, the vocoder aims to fill the discrep-
ancy between the Mel spectrogram settings of ASR and TTS without
changing the input of each model. Moreover, the vocoder can alle-
viate the quality gap between the real and synthesized Mel spectro-
grams. We observe that synthesized Mel spectrogram become clear
after applying the vocoder. However, the vocoder model takes a long
time for inference. Moreover, the text-to-mel and vocoder models
must be applied step by step. We also need to convert the waveform
to a Mel spectrogram again.

In this work, we propose a phone-informed post-processing
network instead of the vocoder, whose data generation time is much
smaller than the vocoder. Specifically, we compose a mel-to-mel
network to directly refine the synthesized Mel spectrogram and
fill the gap from the real speech. Refining the speech on the Mel
spectrograms domain takes less time than that on the waveform do-
main. For general speech enhancement, masking is widely applied
to noisy (not Mel) spectrograms [25], but it cannot use text informa-
tion because it is not usually available. However, it is well known
that enhancement will be improved given phone information of the
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Fig. 1: The architecture of the proposed phone-informed post-
processing network. (1) FastSpeech 2-based model. (2) Proposed
post-processing network using the synthesized Mel spectrogram and
phone information (the output of the variance adaptor).

speech [26, 27], which is available in TTS and data augmentation
tasks. Thus, we use phone embedding information.

Fig. 1 shows an architecture of the proposed phone-informed
post-processing network. We train the FastSpeech 2-based model at
the first stage. After training it, we do not update its parameters.
Next, we compose a Transformer-based network that consumes the
generated Mel spectrogram and the output of the variance adaptor
which corresponds to phone embedding information. The generated
Mel spectrogram and the output of the variance adaptor are taken
from the FastSpeech 2-based model. The residual block is adopted
in the proposed method as in the post-net [17] in FastSpeech 2. We
use an L1 loss between the predicted and the ground-truth Mel spec-
trogram for the objective of training the proposed network. Although
the FastSpeech 2-based model is trained on the same criteria, it must
learn a complex mapping from a text to the Mel spectrogram to-
gether with the duration, pitch, and energy. On the other hand, the
proposed post-processing network is expected to minimize the L1
loss more efficiently since it is given an approximate spectrogram.
In training, we add the weighted loss separately for low (0-20) and
high (21-80) frequencies. In this work, we used 1.4 and 0.6, respec-
tively. Moreover, we also feed phone information, which is readily
available, unlike general speech enhancement. However, the length
of phone sequence is much shorter than that of the Mel spectrogram.
In this work, we use the output of the variance adaptor in the Fast-
Speech 2 model, which predicts the duration of each phone and ex-
tends the outputs of the encoder to the duration. The output length
of the variance adaptor is the same as the predicted Mel spectrogram
length.

When we use the vocoder network, we can change the setting
of the synthesized Mel spectrogram to that used in the ASR via a
waveform. On the other hand, the proposed method needs to use
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the same setting such as the FFT size, the frame length and shift1.
However, recent ASR networks such as Transformer use some CNN
sub-sampling layers, and thus the difference of the settings in TTS
and ASR can be filled.

4. EXPERIMENT EVALUATIONS

4.1. Datasets and tasks

We conducted two domain adaptation experiments, one in English
and the other in Japanese. In training the TTS and ASR models in
English, we used LibriTTS [28] and LibriSpeech corpus [29]. Lib-
riTTS is a sub-corpus of LibriSpeech designed for the TTS task. We
downsampled waveforms of LibriTTS to match the sampling rate
to 16kHz in all datasets. In LibriTTS and LibriSpeech, we used
the train-clean-100 subset. The train-clean-100 of LibriSpeech con-
tains 100 hours of speech data. The train-clean-100 of LibriTTS
contains 53.8 hours of speech data including 247 speakers (Female:
123, Male: 124)

For the TTS model, a word sequence was converted into 85-
class phones by an open-source grapheme-to-phone tool2. To ob-
tain the alignment for training the variance adaptor, we also trained
a CTC-based ASR model with the train-clean-100 and conducted
forced alignment. A pitch (F0) was predicted by WORLD [30].

For ASR tasks, a word sequence was converted into 10k-class
byte-pair-encoding (BPE) units. In this experiment, we suppose that
speech generation is used for domain adaptation from read speech
(LibriSpeech) to spontaneous speech. For the target domain, we used
TED-LIUM release-2 corpus [31] of 91,967 utterances (211 hours).
We used only transcription for generating speech. The generated
speech was mixed with the real speech of LibriSpeech when training
the ASR model. For language model integration, we used official
TED-LIUM 2 text data.

In the task in Japanese, we used the CSJ [32], which has two
different domain subsets named SPS (Simulated Public Speaking)
and APS (Academic Presentation Speech). While SPS is speech on
everyday topics, APS is live recordings of academic presentations.
SPS has 324.1 hours of speech including 1704 speakers. We trained
the TTS and ASR models using the real speech of SPS3. For the
TTS model, a word sequence was converted into 33-class phones.
In the ASR task, we used 10k-class BPE units. We tried to adapt
the ASR model to the APS subset using the transcription of 151,627
utterances (299.5 hours) as the target domain. For evaluation, we
used eval1, which is APS domain speech.

4.2. FastSpeech 2-based TTS and proposed network

We used a FastSpeech 2-based model as the text-to-mel model. The
encoder consisted of a 6-layer Transformer block with 384 model
dimensions, 1,536 feed-forward network dimensions, and four at-
tention heads. The variance adaptor consisted of three variance pre-
dictors which have two CNN layers with a ReLU activation and
layer normalization to predict the duration, pitch, and energy. The
6-layer Transformer with 4-head and 384-dimensional hidden states
which consumes the output of the variance adaptor predicted 80-
dimensional Mel spectrograms with a shift of 12.5 ms. We added
the post-net which had five CNN layers with a kernel size 5. For the

1We must match only the number of frequency bins. In this work, we
used 80-dimensional frequency bins in both ASR and TTS tasks.

2https://github.com/Kyubyong/g2p
3We used about 160 hours in training the TTS and mel-to-mel models, as

training these models with 324.1 hours takes too much time.

Table 1: Results of TED-LIUM 2 dev and test set (WER [%]) and
data generation time of the TTS step.

Method dev test time
Baseline model: Real (train-clean-100) 30.19 27.60 –
Adapted Model: Real (train-clean-100)

+ TTS (TED-LIUM 2)
w/o vocoder and post-processing 17.12 17.79 1×
w/ vocoder 16.71 16.76 2.75×
Proposed method 16.71 16.04 1.26×
Oracle Model: Real (TED-LIUM 2) 9.28 8.56 –

multi-speaker TTS model, speaker IDs were fed to the encoder and
decoder. In speech generation, we randomly selected one speaker
ID per one sentence. We used a linear warmup for the 4k steps. The
TTS models were trained with a gradient norm clipping of 1.0, and
each batch contains totally 10k frames.

The proposed post-processing network consisted of 6-layer
Transformer blocks with 384 model dimensions, 1,536 feed-forward
network dimensions, and four attention heads. It consumes the
predicted Mel spectrogram and the output of variance adaptor. It
is trained on the same setting as the FastSpeech 2-based model
encoder.

For comparison of our proposed method, we used the VocGAN
vocoder [33] which converts Mel spectrograms into a waveform. We
implemented it based on an open-source code4 and trained it using
LibriTTS. We changed the up-sampling rates of the generator to 5,
5, 2, 2, and 2 to generate a 16kHz sampling waveform.

4.3. Transformer-based ASR system

The ASR model consisted of two CNN subsampling layers (each
subsampling factor is 2), 12-layer Conformer-based encoder [5]
with 4-head and 256-dimensional hidden states, and 1-layer unidi-
rectional LSTM decoder with an attention mechanism which had
256-dimensional hidden states. We used the 80-dimensional Mel
spectrogram with a frame shift of 10ms as the input features for the
real speech. In training, we applied a label smoothing [34] with a
factor of 0.1, SpecAugment [35], and multi-task learning with the
CTC loss. We used a linear warmup for the 25k steps. In the adap-
tation, we did not try to balance the real and synthetic speech in a
batch. In decoding, we set the beam search width to 10. For shallow
fusion, we composed a language model with a 4-layer unidirectional
LSTM with 512-dimensional hidden states, and the LM weight was
set to 0.2.

4.4. Results

Table 1 shows the word error rates (WERs) for TED-LIUM 2 dev
and test set and the data generation time relative to that of the
FastSpeech 2 model. The data generation time of the model with
the vocoder includes conversion of the generated waveform to the
Mel spectrograms. When we did not use any generated speech,
WERs were not good because there was a serious domain mismatch
between LibriSpeech and TED-LIUM 2. By using the generated
speech by the TTS model, we observe 43.3% and 35.5% relative
improvement on the dev and test set of TED-LIUM 2 without any
post-processing. Applying the vocoder yielded further improve-
ment (44.6% and 39.3% relative improvement). Our proposed
post-processing network achieved sightly better performance than

4https://github.com/rishikksh20/VocGAN
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Table 2: Effect of phone information in the proposed method.

dev test
w/ phone information (w/ F0 and energy) 16.71 16.04
w/ phone information (w/o F0 and energy) 16.96 16.30
w/o phone information 17.13 16.76

Table 3: Comparison of frequency bins (80-dim, 0-8kHz) selectively
refined in the proposed method. All models used the phone informa-
tion. Low bin corresponds to low frequency. In “1-20” and “20-80”,
we did not use any loss weight.

Method dev test
1-20 17.20 16.65
21-80 17.21 16.85
1-80 16.71 16.04

the vocoder (45.3% and 41.9% relative improvement) in a much
smaller amount of data generation time. We confirmed that our pro-
posed method enhanced the effect of data generation with a simple
framework.

In Table 2, we evaluated the effect of the use of the output of
the variance adaptor, which has phone information together with F0
and energy. The model without phone embedding information uses
only Mel spectrograms generated by the FastSpeech 2 model. In this
case, improvement of the ASR performance is limited and worse
than the case using the vocoder. On the other hand, when we remove
the additional acoustic prediction (F0 and energy), the result is not
changed so much. These results show that the use of the phone em-
bedding information is critical for improving the speech refinement
and ASR performance.

Table 3 presents an investigation which frequency bins we
should refine. In this experiment, we refined the Mel spectrograms
of the specified bins. Enhancing all bins (“1-80”) achieved the
best performance. Partial refinement improved the performance,
but the improvement was limited. Fig. 2 shows the L1 loss of the
FastSpeech 2 and proposed model. It indicates that the loss at high
frequency bins are larger than that at low frequency bins because
the low frequency bins have a constant high energy, which is more
easily learned. The generated Mel spectrogram at high frequency
bins still has a large gap with the real Mel spectrogram and filling
the gap improves the ASR performance. We also confirmed the loss
of the proposed model is lower than that of the FastSpeech 2 model
in all frequency bins. This suggests the proposed model improves
Mel spectrogram effectively.

In the proposed method, we used a residual block and did not
predict Mel spectrogram directly. We used a replacement block as
an alternative (remove ’+’ sign in Fig. 1). The network with a re-
placement block directly predicts Mel spectrogram to be replaced.
Table 4 shows that the residual block model achieves higher perfor-
mance than the replacement block.

Table 5 shows the results of domain adaptation in the Japanese
data sets. The model without any processing achieves 40.4% relative
improvement from the baseline model. When we compare the aug-
mented and oracle models, the absolute WERs difference is lower
than 2 points. This is because the speaking style of SPS is spon-
taneous and similar to that of APS. The proposed model realizes a
large improvement in much less data generation time. In the CSJ
experiments, the data generation time of the vocoder is shorter than
in TED-LIUM 2 cases since the duration of TED-LIUM 2 speech
is longer than that of CSJ (the average duration of TED-LIUM 2

Fig. 2: Values of L1 losses of the FastSpeech 2, proposed model,
and the average of frequency bins in the FastSpeech 2. The loss
was calculated for each frequency bin from random 1,000 dev-clean
samples.

Table 4: Comparison of the residual and replacement blocks in the
proposed method. These networks used the phone information and
refined all bins.

Method dev test
replacement block 17.21 16.97
residual block 16.71 16.04

Table 5: Results of CSJ test set (WER [%]) and data generation
time.

Method eval1 time
Baseline model: Real (SPS) 17.09 –
Adapted Model: Real (SPS)

+ TTS (APS)
w/o vocoder and post-processing 10.19 1×
w/ vocoder 10.09 2.03×
Proposed method 9.75 1.26×
Oracle Model: Real (SPS+APS) 8.37 –

synthesized speech is 7.3s and that of CSJ is 5.3s). We confirm the
proposed network refines the synthesized speech effectively in dif-
ferent kinds of data sets.

5. CONCLUSIONS

In this work, we have proposed the phone-informed post-processing
network for data augmentation for the ASR model using the TTS
model without the vocoder network. Unlike the vocoder network, we
directly refine the generated Mel spectrogram derived from the text-
to-mel network (FastSpeech 2-based model). The proposed network
uses not only the predicted Mel spectrogram but also the output of
the variance predictor which corresponds to the phone information.
In the experimental evaluations, the proposed method resulted in a
large improvement from the baseline and better performance than the
vocoder in a much smaller amount of data generation time. We also
showed that the use of the phone information is critical for improving
the performance.
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