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ABSTRACT

While end-to-end automatic speech recognition (ASR) has
achieved high performance, it requires a huge amount of
paired speech and transcription data for training. Recently,
data augmentation methods have actively been investigated.
One method is to use a text-to-speech (TTS) system to gen-
erate speech data from text-only data and use the generated
speech for data augmentation, but it has been found that the
synthesized log Mel-scale filterbank (lmfb) features could
have a serious mismatch with the real speech features. In this
study, we propose a data augmentation method via a discrete
speech representation. The TTS model predicts discrete ID
sequences instead of lmfb features, and the ASR also uses
the ID sequences as training data. We expect that the use
of a discrete representation based on vq-wav2vec not only
makes TTS training easier but also mitigates the mismatch
with real data. Experimental evaluations show that the pro-
posed method outperforms the data augmentation method
using the conventional TTS. We found that it reduces speaker
dependency, and the generated features are distributed more
closely to the real ones.
Index Terms: Speech recognition, Sequence-to-sequence
model, Data augmentation, Vq-wav2vec, Speech synthesis

1. INTRODUCTION

The deep learning-based, neural end-to-end approach is
capable of high-quality text-to-speech (TTS) and state-of-
the-art automatic speech recognition (ASR). With regard
to the end-to-end ASR model, the connectionist temporal
classification (CTC)-based model [1], the attention-based
encoder-decoder model [2], recurrent neural network trans-
ducer (RNN-T) [3], and transformer-based model [4, 5] have
achieved high performance. However, these end-to-end mod-
els need a huge amount of paired data of speech and tran-
scription for training.

To reduce the amount of data needed for training, a num-
ber of studies have tried data augmentations using unpaired
text data. Several of these studies focused on building a lan-
guage model (LM) with text data and then integrating the LM
with or transferring its knowledge to the ASR decoder [6, 7].
Another direction that has been pursued is incorporation of

unpaired text data into (part of) the ASR model training [8, 9,
10, 11, 12]. Tjandra et al. [8, 9] investigated joint optimiza-
tion of end-to-end ASR and TTS in a speech chain model.
Hayashi et al. [10] introduced back-translation for utilizing a
large amount of unpaired text data. Masumura et al. [11] pre-
pared a shared decoder to train phoneme-to-grapheme (text-
only data) and ASR tasks (paired data) and pre-trained the de-
coder on a phoneme-to-grapheme task. Tang et al. [12] jointly
trained speech-to-subword and phone-to-subword tasks.

In addition to the above studies, many recent studies have
leveraged TTS [13, 14, 15, 16, 17, 18, 19, 20, 21] in train-
ing ASR models. The TTS model generates speech data from
text-only data, which are mixed with real speech to train the
ASR model. Tacotron 2 [22] and transformer-based mod-
els [23] can now synthesize human-like speech when they are
given a sufficient amount of speech data from a single speaker.
TTS is particularly useful for covering out-of-domain words.
However, the use of synthesized data brings only a limited
improvement compared with using real data since the synthe-
sized features are rather different from real speech. Moreover,
the TTS system often generates unrealistic speech.

In this paper, we propose a novel data augmentation
scheme using a discrete representation. In this scheme, TTS
predicts discrete ID sequences from texts instead of log Mel-
scale filterbank (lmfb) features. When we train an ASR
model, we also use acoustic features converted from the
discrete ID. We adopt vq-wav2vec [24], which is an unsuper-
vised training method to produce a discrete representation.
We believe that the use of a discrete representation has two
benefits over the standard use of TTS by experimental evalu-
ations: (1) a discrete representation is much easier to predict
than the lmfb features of continuous values; (2) it reduces
speaker dependency, which the TTS has trouble separating
from the segmental information.

2. MODELS FOR TTS AND DISCRETE
REPRESENTATION

2.1. Vq-wav2vec

Vq-wav2vec learns a discrete representation of speech frames
through a self-supervised future time-step prediction task.
The model is based on three convolutional neural networks,
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in which the encoder produces a representation zi for each
time step i with a rate of 100 Hz; a quantization module
converts zi to a discrete representation ẑi, and an aggre-
gator combines the multiple encoder time steps into a new
representation ci. The quantization module replaces the orig-
inal representation zi by ẑi = concat(ei,1, ..., ei,G) from a
shared fixed-size codebook E ∈ RV×d/G, which contains V
representations of size d/G, where d is the dimension of ẑi
and G is the number of groups. We represent each row by
an integer index and represent the feature vector ẑi by the
indices wi ∈ [V ]G, where each element wi,g corresponds to
a fixed codebook vector. For instance, when G = 2, two-
dimensional code is generated, e.g. (15, 24) and (36, 87). We
concatenate the elements and make the vocabulary for BERT,
e.g. “15-24” and “36-87”, when feeding data to BERT.

In the context prediction, wav2vec loss [25] is defined for
steps k = 1, ...,K as:

Lwav2vec
k = −

T−k∑
i=1

(
log σ(ẑ

T
i+k hk(ci)) + λ E

ẑ∼pn

[log σ(−˜̂zT
hk(ci)]

)
(1)

where T is the sequence length, σ is a sigmoid function, hk is
a step-specific affine transformation, and thus σ(ẑT

i+k hk(ci))
is the probability of a sample zi+k, that is k-steps in the fu-
ture, being correctly predicted. ˜̂z are negative samples drawn
from a uniform distribution pn on the same utterance. In ad-
dition to the wav2vec loss, the Gumbel-Softmax or K-means
loss is added between ẑi and zi. Here, we used K-means
clustering and added the loss of vector quantization [26] to
Lwav2veck . As a result, the vq-wav2vec model maximizes
Lvq−wav2vec as follows:

Lvq−wav2vec
=

K∑
k=1

Lwav2vec
k + (‖sg(z)− ẑ‖2 + γ‖z − sg(ẑ)‖2) (2)

where sg(x) ≡ x, d
dx sg(x) ≡ 0, and γ is a hyperparameter.

BERT is also used for training a more sophisticated rep-
resentation of the context features. BERT was trained on vq-
codes of 960h training data using the MLM task. We use
the last layer’s hidden states as the input features of the ASR
model.

2.2. FastSpeech 2

For data augmentation of ASR, we need to generate a huge
amount of data [13]. We have recently learned that non-
autoregressive approaches to TTS are much faster in gen-
erating speech compared to autoregressive ones such as
Tacotron 2 that we have been utilizing in our work [13]
In this work, we chose to use FastSpeech 2 [27], which is
a non-autoregressive model based on the transformer-based
architecture. It predicts not only lmfb features but also other
prosodic features such as duration, F0, and energy. It has
CNN-based layers called a duration predictor between the
encoder and the decoder that predict the phone duration be-
fore the decoder. When we use predictors for other prosodic

features, they are also placed before the decoder. The de-
coder generates lmfb features in parallel from the predicted
duration and other information. To train FastSpeech 2, we
need to prepare ground-truth values of the duration and other
prosodic features. In this study, we used a multi-speaker cor-
pus for training since multi-speaker speech has been shown
to be more effective for data augmentation in ASR [14]. In
particular, we added a speaker ID and speaker embedding
layers [28] between the multi-head attention and the feed-
forward module of each encoder and the decoder layer. In
inference, we randomly select speaker IDs of the training
speakers.

3. PROPOSED METHOD

3.1. Conventional data augmentation by TTS

The conventional data augmentation scheme using TTS has
four steps: (1) train the TTS that predicts the lmfb features
from the phone sequence; (2) generate lmfb features using
unpaired texts; (3) convert lmfb features into a waveform by
using a vocoder; (4) perform ASR training using the gener-
ated waveform data mixed with real data. In this scheme, the
vocoder bridges the gap between the lmfb features of the ASR
model and the TTS model.

Although the generated speech data give some improve-
ment in ASR performance, the gain is limited since the TTS
does not completely reproduce the real speech. To allevi-
ate this problem, Mimura et al. [13] froze the ASR acoustic
encoder when training with the synthesized data. Wang et
al. [18, 19] investigated consistency regularization when TTS
is incorporated with ASR. Zheng et al. [20] introduced a
loss for regularization of the decoder when the ASR model
is finetuned for out-of-vocabulary words. Fazel et al. [21]
investigated a multi-stage training strategy by combining
weighted multi-style training, data augmentation, encoder
freezing, and parameter regularization. Several studies have
used speaker information to generate multi-speaker speech
such as a speaker ID [14], VAE latent variables [15], pre-
trained speaker verification model [21], and a global style
token (GST) [16]. Chen et al. [17] jointly trained the pre-
trained TTS and ASR using a GAN-based model to increase
the acoustic diversity in the synthesized data.

3.2. Data augmentation via discrete ID sequences

A major problem with the conventional data augmentation
using TTS is the mismatch between the synthetic and real
speech data. Conventionally, lmfb features are used as an in-
termediate representation for both TTS and ASR. Since an
lmfb feature is a continuous value and the loss used for train-
ing does not address phonetic constraints, the TTS model of-
ten generates unrealistic data that do not exist in real speech.
Moreover, neural TTS tends to generate many errors such
as too short or repeated speech [29], and multi-speaker TTS
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Fig. 1. Overall architecture of the proposed data augmenta-
tion for ASR. (1) Train vq-wav2vec and BERT using the real
waveform. (2) Perform TTS training using discrete IDs and
texts (phones). (3) Generate discrete IDs from texts (phones).
(4) Generate features from discrete IDs via BERT (5) Perform
ASR training using the final hidden states of BERT and texts
(subwords).

model causes more errors than the single speaker model. It
is much more difficult to train a multi-speaker TTS model
since the amount of training data available is usually quite
limited per speaker and multi-speaker features have more va-
riety. These problems pose a bottleneck for effective data aug-
mentation for ASR model training.

To address the above two problems, we introduce a dis-
crete representation to be used for both ASR and TTS. Theo-
retically, the unreal features which do not exist in real features
are not generated because the TTS model selects the discrete
IDs from a finite set. Moreover, using discrete IDs for a TTS
target makes the TTS task easier since selecting IDs from the
fixed classes is considered to be easier than predicting a con-
tinuous values. Fig. 1 shows an overview of the proposed
method. In this work, we use the vq-wav2vec module for the
intermediate representation to convert waveform into the dis-
crete IDs because the vq-wav2vec achieved promising perfor-
mance of ASR [24]. The output layer of the TTS is a softmax
layer corresponding to the discrete IDs. The proposed archi-
tecture has five steps.

1. Train vq-wav2vec and BERT.

2. Train TTS to predict discrete IDs from texts using
paired training data.

3. Generate discrete ID sequences using TTS from text-

FastSpeech�2
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× 4

CNN
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ID1

softmax

softmax ID1

softmax ID2

Fig. 2. Postnet architecture of the proposed TTS system. The
vq-wav2vec model generates two IDs from a 10ms segment
of speech, which the TTS system predicts.

only training data for ASR.

4. Convert the ID sequences to ASR features through
BERT.

5. Perform ASR training using the generated data mixed
with real data.

In step 1, we use the original vq-wav2vec with which the two
discrete IDs (G = 2) are generated every 10ms.

Then, we use the FastSpeech 2-based model to synthesize
discrete ID sequences. For this purpose, we replace the lmfb
prediction layer of FastSpeech 2 with two output layers to
predict these discrete IDs. We add a Postnet in order to divide
the hidden state from FastSpeech 2 into two (G) streams of
representations for two (G) IDs and to smooth this sequence
of representations. Fig. 2 shows the Postnet architecture of
the proposed method. The Postnet concatenates the hidden
states of the linear layers corresponding to ID1 and ID2 and
then applies five convolution layers. We finally sum the out-
puts of the linear layers and CNN and separate them into two
outputs corresponding to ID1 and ID2. For the training, we
used two softmax cross-entropy losses for the FastSpeech 2
output and Postnet output. When generating IDs, we use the
Postnet output.

For the FastSpeech 2 model training, we also need to align
between the transcriptions and audio in advance. For this pur-
pose, we train a CTC-based ASR model on the same data and
conduct forced alignment. The original FastSpeech 2 model
uses additional prosodic information such as F0 and energy.
In particular, we use F0 and energy to build a baseline Fast-
Speech 2 model that generates lmfb features. However, we
do not use this information in our method that predicts dis-
crete ID sequences. In inference, we generate an ID sequence
from a phone sequence. Unlike the standard lmfb-output Fast-
Speech 2 model, we predict IDs by selecting the index with
the highest probability in the softmax layer. The generated
IDs are concatenated and fed into BERT to generate the ASR
features.
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4. EXPERIMENTAL EVALUATIONS

4.1. Datasets and tasks

All experiments were conducted with English TTS and ASR
models using the LibriSpeech [30] corpus. We converted the
sampling rate of the waveforms to 16 kHz for all datasets. To
train the TTS model, we used train-clean-100 of the LibriTTS
corpus [31], which is derived from LibriSpeech and designed
for TTS tasks. In LibriTTS, train-clean-100, which is subset
of LibriSpeech train-clean-100, has 53 hours’ worth of paired
data from 247 speakers (male: 123, female: 124).

We used 85 phones and the speaker ID as inputs to the
TTS. We converted each word sequence to a phone sequence
with an open-source grapheme-to-phone tool1. To obtain the
ground-truth alignment for FastSpeech 2 training, we also
used a CTC-based ASR model trained with LibriTTS train-
clean-100. We also trained a standard FastSpeech 2 model
as a baseline, which generated 80-dimensional lmfb features
based on a 50-ms window with a shift of 12.5ms. To obtain
F0, we used WORLD [32]. We also used MelGAN [33] con-
ditioning on the lmfb features trained with LibriTTS train-
clean-100 to generate a waveform and then converted it into
the ASR-matched lmfb features again.

After data augmentation with the TTS, we trained and
evaluated the ASR models with LibriSpeech and TED-LIUM
release-2 [34]. We used real speech and transcription data of
LibriSpeech train-clean-100 for the baseline. We augmented
the data by using the text data of train-clean-360 for Lib-
riSpeech testset (Section 4.3.1) and TED-LIUM 2 training set
for TED-LIUM 2 testset (Section 4.3.2). We trained ASR
models on three training data on each corpus.

• Baseline model: train-clean-100 (real).

• Augmented model: train-clean-100 (real) + synthe-
sized data of train-clean-360 or TED-LIUM 2.

• Oracle model: train-clean-100 (real) + real data of
train-clean-360 or TED-LIUM 2.

We also prepared standard lmfb-input ASR systems for
comparison. We used 80-dimensional lmfb features based on
a 25-ms window with a shift of 10 ms. In the vq-input ASR
systems, we used the 1024-dimensional final hidden states
of BERT as the input. We used the pre-trained vq-wav2vec
with K-means clustering and RoBERTaBASE models2, which
were trained with waveforms of LibriSpeech 960h. In the
experiments on the vq-input ASR, we did not finetune the vq-
wav2vec and BERT models. In all tasks, we used 1000-class
subwords based on byte-pair encoding [35]. We used the tran-
scription and the official text data for training the language
model of each dataset on the basis of the same subwords.

1https://github.com/Kyubyong/g2p
2https://github.com/pytorch/fairseq/tree/master/examples/wav2vec

4.2. Network configurations

We built an lmfb-output TTS model and a discrete ID-output
TTS model based on FastSpeech 2. The FastSpeech 2-based
models had six transformer layers in the encoder and decoder
with 384 model dimensions, 1536 feed-forward network di-
mensions, and 4 attention heads. The Postnet has five CNN
layers with kernel size 5. The learning rate was warmed up
over the first 1000 updates and then linearly decayed. In the
discrete ID-output TTS, we used an L1 loss for the alignment
prediction and two softmax cross-entropy losses for the Fast-
Speech 2 output and Postnet output, which corresponded to
IDs. In the lmfb-output TTS, we added the Postnet without
blocks for generating discrete IDs for fair comparison. We
used five L1 losses in order to predict the alignment, F0, en-
ergy, FastSpeech 2-output lmfb features, and Postnet-output
lmfb features.

We also built an lmfb-input ASR model and vq-input
ASR, whose input consisted of BERT’s hidden states. The
ASR models were attention-based encoder-decoder models.
The encoder had 5-layer BiLSTMs with 320-dimensional
hidden states. The decoder was composed of a 1-layer uni-
directional LSTM with an attention mechanism. SpecAug-
ment [36] is applied, with two frequency masks with F = 27
and two time masks with T = 100 in the lmfb-input ASR
model and two frequency masks with F = 260 and two time
masks with T = 100 in the vq-input ASR model. We sorted
all of the training data in ascending order of speech length and
trained the ASR model epoch by epoch. In the augmentation,
we also sorted the mixed data and did not try to balance the
real and synthetic speech in a batch.

In inference, we set the beam search width to 4 and ap-
plied shallow fusion [37] with an LM weight of 0.2. The lan-
guage models for LibriSpeech and TED-LIUM 2 were com-
posed of four unidirectional LSTM layers with 512 dimen-
sional hidden states.

The pre-trained vq-wav2vec is composed of eight CNN
encoder layers with 512 channels and 12 CNN aggregator
layers with 512 channels [24]. K-means clustering with two
groups of 320 classes (V = 320, G = 2, d = 512) was used
for vector quantization. The codebook was shared between
the two groups. For BERT-based ASR feature generation, we
also used pre-trained RoBERTaBASE models with 12 layers,
768 model dimensions, 3072 feed-forward network dimen-
sions, and 12 attention heads to generate ASR features [24].

4.3. Results

4.3.1. LibriSpeech

Table 1 lists the word error rates (WERs) on the LibriSpeech
dev and test sets. With the baseline model using LibriSpeech
100h, the WERs with both lmfb-input and vq-input ASR
were over 9% in the “clean” settings and 25% in the “other”
settings. When augmented with 360 hours of TTS data, the
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Table 1. ASR results (WER) on LibriSpeech.
Method dev-clean dev-other test-clean test-other
Baseline
Real 100h lmfb 9.40 30.22 9.76 32.08

vq 9.59 25.34 10.14 26.20
Augmented
Real 100h lmfb 7.12 29.41 7.87 30.16

+ TTS 360h vq 6.50 21.00 6.96 22.33
Oracle
Real 100h lmfb 4.70 18.40 5.06 18.65

+ Real 360h vq 5.54 18.16 5.76 18.92

Table 2. ASR results (WER) on TED-LIUM 2
Method dev test
Baseline

Real 100h lmfb 34.58 33.75
vq 31.29 31.99

Augmented
Real 100h lmfb 28.11 30.05
+ TTS TED-LIUM 2 vq 21.49 22.49

Oracle
Real 100h lmfb 10.56 9.88
+ Real TED-LIUM 2 vq 13.24 13.33

lmfb-based model achieved 2.28-, 0.81-, 1.89-, and 1.92-
point improvements from the baseline on dev-clean, dev-
other, test-clean, and test-other evaluation sets, respectively.
On the other hand, the proposed vq-based augmentation
achieved 3.09-, 4.34-, 3.18-, and 3.87-point improvements
from the baseline. We assume that the WER reductions from
the baseline given by the oracle models trained with 100h +
360h of clean speech are the upper limits of the WER reduc-
tion possibly achievable by training data augmentation with
synthetic speech. When we see the WERs obtained with the
proposed vq-based approach, we find that they have achieved
76.3%, 60.4%, 73.6%, 53.2% of the WER reductions given
by the oracle model for dev-clean, dev-other, test-clean, and
test-other, respectively. These ratios are much better than
those achieved by lmfb-input data augmentation, which were
48.5%, 6.9%, 40.2%, and 14.3%, respectively. From these re-
sults, we see that the use of vq-wav2vec-based representation
in ASR reduces the discrepancy between real and synthetic
speech. When we look at the baseline results, we find that
this representation is also less sensitive than lmfb features to
the difference between “clean” and “other” settings that is
supposed to reflect the differences in recording quality and
accents [30]. This may be the reason that we have more
accuracy gains in “other” settings compared to lmfb features.

4.3.2. TED-LIUM 2

In the experiment described in the previous section, we used
LibriSpeech data to train all of the vq-wav2vec, TTS, and
ASR models. In the experiment described in this section,

Table 3. ASR results (WER) using only synthetic features. In
the LibriSpeech task, we evaluated the ASR models on dev-
clean and test-clean.

Method dev test

TTS LibriSpeech 460h lmfb 53.97 52.16
vq 15.18 16.85

TTS TED-LIUM 2 211h lmfb 90.41 88.34
vq 40.04 43.54

we applied the proposed model to a completely different
task (TED-LIUM 2). Table 2 shows the WERs on the dev
and test set of TED-LIUM 2. With the baseline using only
LibriSpeech 100h, the WERs of the lmfb-input and vq-input
ASR models were both over 30% apparently due to the speak-
ing style difference. While the data augmentation with lmfb
TTS yielded 6.5-point and 3.7-point improvements on the
the dev and test sets respectively, vq-wav2vec TTS achieved
much higher 9.8-point and 9.5-point improvements on the
respective set. The proposed model filled 54.3% of the WER
gap between the baseline and the oracle while the lmfb-based
model fills only 26.9% of the gap, when we look at the dev set
results. From these results, we see that the proposed vq-based
approach is also effective to alleviate the mismatch between
the domain of read speech and spontaneous presentations.

4.3.3. ASR training using only synthetic features

In order to see how it is realistic or not to train ASR models
only with synthetic data, we generated 460 hours of synthetic
speech and trained ASR models. Table 3 shows WER results.
Even though the TTS model was trained with the LibriSpeech
dataset, the WERs of the lmfb-input ASR model were over
50% for the LibriSpeech clean data sets. This is because there
is a serious mismatch between the generated and real lmfb
features. On the other hand, the proposed model gave much
smaller WERs of 15.18% and 16.85% on the dev-clean and
test-clean sets, respectively. From these results, we see that
having at least some 20 percent of real speech or not in the
training data makes a huge difference in the ASR accuracy.
In this experiment, we again see that the discrepancy from
real speech appears much smaller with the vq-based approach
and the WER results are encouraging. With the TED-LIUM 2
task, presumably due to the differences in speaking style and
recording condition, the lmfb results are drastically deterio-
rated to around 90 percent while the WERs with the vq-based
approach still stay around 40 percent.

5. DISCUSSIONS

Fig. 3 shows a t-SNE visualization for the phones IY (top) and
OW (bottom) using 5-speaker lmfb features and vq-wav2vec
features extracted from real speech. We see that speakers
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Fig. 3. Comparison of t-SNE visualizations of lmfb and vq-
wav2vec features. Each color represents a different speaker.

form clusters within a phone in the lmfb feature distributions
whereas speakers are randomly scattered within a phone in
the vq-wav2vec feature distributions. This result suggests
that vq-wav2vec reduces speaker-dependent information.
This property was helpful for stable training of multi-speaker
TTS models.

Fig. 4 compares t-SNE visualizations of the real and syn-
thetic features. The real features were extracted from one Lib-
riSpeech dev-clean speaker and the synthetic features were
generated using TTS trained with LibriSpeech train-clean-
100 data. Speaker IDs were randomly given. We can see that
the features are pretty well separated by phones for both lmfb
and vq-wav2vec features. On the other hand, real and synthe-
sized features are well mixed for vq-wav2vec but they form
clear clusters with lmfb features. This suggests the proposed
approach of selecting vq codes from pre-trained codebooks
indeed helps to avoid generating many unnatural sequences
of features, which, in turn, gives less damage to the training
of ASR models using both natural and synthetic data.

6. CONCLUSIONS

We have proposed a novel data augmentation method for ASR
that leverages TTS via a discrete representation. The conven-
tional method has a serious mismatch between the generated
and real speech, which often results in a limited improve-
ment from TTS-based data augmentation. To mitigate this
mismatch, we have introduced vq-wav2vec-based IDs as an
intermediate representation instead of lmfb features. In the
experimental evaluations, the proposed method resulted in a
more effective data augmentation. In addition, the vq-based
features were found to exhibit much reduced speaker identi-
ties and much less differences between synthesized and real
data.

Fig. 4. Comparison of t-SNE visualizations using lmfb and
vq-wav2vec features on two phones (IY and OW). Bluish
colors represent OW sounds and reddish colors represent IY
sounds, darker being real and lighter synthetic.
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