
Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

Fusing Multiple Bandwidth Spectrograms for
Improving Speech Enhancement

Hao Shi∗, Yuchun Shu†, Longbiao Wang†, Jianwu Dang†, Tatsuya Kawahara∗
∗ Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan

† Tianjin Key Laboratory of Cognitive Computing and Application,
College of Intelligence and Computing, Tianjin University, Tianjin, China
‡ Japan Advanced Institute of Science and Technology, Ishikawa, Japan

E-mail: shi@sap.ist.i.kyoto-u.ac.jp

Abstract—The spectrogram is a common feature of frequency
domain speech enhancement (SE). It can be divided into wide-
band and narrowband according to the resolution of the spectro-
gram, which is controlled by the length of framing time. Although
narrowband and wideband spectrograms have their own spectral
characteristics, SE systems conventionally utilize single narrow
bandwidth spectrograms. In this paper, we propose an SE
system that simultaneously utilizes multiple bandwidth spectral
information, more specifically, augments the wider bandwidth
(16ms and 8ms) spectrograms as auxiliary information. Multiple
bandwidth information fusion is implemented in the encoder in
two ways: fusion only in the last layer (MI-F) and fusion layer
by layer (MI-L). Experiments using the VB dataset show that
different bandwidth spectrograms can provide supplementary
information, which provides more than 0.1 PESQ improvement.
The embedding dimension affects the position of the fusion
position: MI-F requires less embedding dimension, while MI-
L requires a larger dimension and more varied bandwidth.
Moreover, the spectrogram which differs more from the main
enhancement spectrogram provides better auxiliary information.

Index Terms: speech enhancement, narrowband spectrogram,
wideband spectrogram

I. INTRODUCTION

Noise has a great negative effect on speech signal processing
[1]. As speech applications become popular, it is necessary
to improve their performance in noisy scenarios [2]. Speech
enhancement (SE) [2] is dedicated to recovering clean speech
from noisy speech signals. Traditional SE methods [3], [4],
[5], [6] are based on some established prior assumptions. In
addition, these methods rely on the parameter setting and
manual tuning. With the development of deep learning [7],
many studies show that deep learning-based SE [8], [9], [10],
[11] performs better than the traditional methods. Among these
deep learning-based SE methods [12], [13], [14], [15], the
frequency-domain enhancement methods are still widely used.

Spectrogram is a common feature for frequency-domain SE
[16], [17], [18]. According to the resolution of the spectrogram,
which is controlled by the length of framing time, it can
be divided into wideband and narrowband [19]. The two
kinds of spectrograms are much different and have their own
characteristics [19]. Fig. 1 shows the spectrograms extracted by
8ms, 16ms, and 32ms length of framing time. Because of the

Longbiao Wang and Tatsuya Kawahara are corresponding authors.

Fig. 1. Spectrogram examples extracted with different window lengths: (a)
32ms narrowband spectrogram; (b) 16ms wideband spectrogram; (c) 8ms
wideband spectrogram.

short time period of each frame, wideband spectrograms have
better time resolutions and can capture the rapid amplitude
changes [20]. In the wideband spectrograms, the formant
information of speech can be clearly seen, but the harmonic
frequencies cannot be seen [20]. On the other hand, the
narrowband spectrograms have longer frame lengths. It is too
long to capture the rapid changes in amplitude [20], but have
better spectral resolutions. It is easy to see the position of the
harmonics in the narrowband spectrograms, but difficult to spot
the position of the formant [20].

Although there is information complementarity between
spectrograms with different bandwidths, the current SE system
conventionally uses spectrograms extracted by a single window
length as input and output. Some related works use convolu-
tional neural network to extract multi-scale features [21], [22],
[23] instead of multiple bandwidth spectrogram inputs.

In this paper, we design a multiple input SE system by in-
corporating 8ms and 16ms bandwidth spectrogram to the 32ms
bandwidth spectrogram enhancement system. Spectrograms of
different bandwidths are processed by multiple convolution
blocks separately, and they are fused in the encoder. The
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Fig. 2. Flowchart of (a) CRN; (b) CRN with Linear Blocks; (c) Multi-input Final Fusion (MI-F); (d) Multi-input Layer-by-layer Fusion (MI-L); (e) Structure
of Conv Block; (f) Structure of DeConv Block; (g) Structure of Linear Block.

difference between the two proposed methods is in the fusion
position. More specifically, different bandwidth spectrograms
are fused only in the last encoder layer (MI-F) or layer by
layer (MI-L). We propose to use Linear Blocks to fuse different
information. For MI-F, one Linear Block is only added to the
last encoder layer; for MI-L, Linear Blocks are added after
each encoder layer.

The rest of this paper is organized as follows. Section 2 de-
scribes the baseline model. Section 3 introduces our proposed
methods. Section 4 presents the dataset, experimental settings,
and experimental results. Section 5 gives the conclusion of this
paper and future work.

II. BASELINE MODEL

We choose Convolutional Recurrent Neural Network [24]
(CRN, shown in Fig. 2–(a)), which performs well in frequency-
domain SE as a baseline system. It contains an encoder:

e = E(x) (1)
where x and e are the noisy input spectrogram and the output
of the encoder, respectively. E is the encoder of CRN, which
contains several Conv Blocks (shown in Fig. 2–(e)). The output
of the encoder is fed into the LSTM layers:

l = L(e) (2)
where l is the output of the LSTM layers. Then, l is input to
the decoder:

m = D(l) (3)

where m is the output of decoder. D is the decoder of CRN,
which contains several DeConv Blocks (shown in Fig. 2–(f)).

In this paper, we adopt a masking-based SE system:
ô = m ∗ x (4)

Fig. 3. 16ms and 8ms features aligned with 32ms features for framing

where ô is the final enhanced spectrogram. When training the
network, we use the signal approximation (SA) [25], [26]. The
loss function of training is as follow:

LSA =
1

tf

∑
t,f

||ô− c||2F , (5)

where t, f represent time and frequency respectively, and c is
the clean spectrogram.

III. PROPOSED METHOD

In this paper, we utilize supplementary information of dif-
ferent bandwidth spectrograms. The proposed method inputs
multi-bandwidth spectrograms simultaneously.
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A. Structure of Neural Network

The flowcharts of the proposed methods are shown in Fig. 2–
(c) and Fig. 2–(d). Both of Multi-input Final Fusion (MI-
F) and Multi-input Layer-by-layer Fusion (MI-L) have an
encoder, LSTM layers and a decoder. The network structure
in front of the LSTM layers comprises the encoder. We use a
Linear Block (shown in Fig. 2–(g)) to fuse the information of
multiple bandwidth spectrograms:

h = LB(fm32, fm16, fm8) (6)
where the fm32, fm16, fm8 are feature maps of 32ms, 16ms,
and 8ms bandwidth spectrograms respectively. LB represents
the Linear Block, and h is the output of Linear Block. h and
fm32 have the same feature dimension, which is realized by
the linear layer of the Linear Block. For MI-F, Linear Block is
only added to the last layer of the encoder. For MI-L, Linear
Blocks are used to fuse the multiple bandwidth information
after each Conv Block in the encoder. The residual connection
is used between the corresponding encoder layer and the
decoder layer. For layers without a Linear Block, we directly
input the output of the Conv Block into the corresponding
layer of the decoder. When there is a Linear Block, we input
the output of the Linear Block to the corresponding layer of the
decoder. The proposed network can be expressed as follows:

m = NMI−F (fm32, fm16, fm8), (7)
or

m = NMI−L(fm32, fm16, fm8), (8)

where NMI−F and NMI−L are networks of proposed MI-F
and MI-L methods. The final enhanced spectrogram can be
obtained by Eq. (4).

B. Processing of Input Features

Spectrograms extracted with different time periods have
different information in the same time frame. With different
lengths of framing time and frame shift, the frame number
and information of each frame are also different. In order to
ensure that the corresponding frames of different bandwidth
spectrograms are aligned when input to the network, we
concatenate adjacent frames of 16ms and 8ms spectrograms.
This process is applied after the Conv Block and before the
Linear layer. In this work, the frame shift was 50%. One frame
of 32ms spectrogram corresponds to adjacent 3 frames of 16ms
spectrogram; one frame of 32ms spectrogram corresponds to
adjacent 7 frames of 8ms spectrogram. In addition, to align the
frames, the start and end time of the 32ms frame must be the
same as that of 16ms/8ms after framing. This means that the
i-th 32ms frame corresponds to the framing centered on the
2i-th 16ms frame and the corresponding framing centered on
the 4i-th 8ms frame. The corresponding relationship is shown
in Fig. 3. The diagram of the frame concatenation is shown in
Fig. 4.

C. Training of the Network

The network takes SA masking as a learning target which
calculates the loss with Eq. (5). The output of the network

Fig. 4. Diagram of the frame concatenation.

is the mask m for the 32ms spectrogram, which is used for
enhancement in Eq. (4)

IV. EXPERIMENTS

We used a public VB dataset1, which is synthesized from
the Voice Bank dataset and the Demand dataset. It contains
training and test sets. We selected all data of two speakers (one
male and one female) as the validation set. This will ensure
that the test speakers were unseen. Finally, the training set
contained 10,705 utterances, and the validation set contained
867 utterances. We used the best-performing model under
the validation set for evaluation. The test set contained 824
utterances in total. The sampling rate of the original dataset
is 48k Hz. We downsampled the audio to 16k Hz in our
experiments. For feature extraction, we used the following
parameters to extract 32ms spectrogram: window length was
512; hop length was 256; short-time Fourier transform points
was 512. For 16ms/8ms spectrograms, these hyperparameters
were set to 256/128, 128/64, 256/128. We used the magnitude
of the spectrogram as both input and output of the experiments.

All models contain a 5-layer Conv Block encoder and a
5-layer DeConv Block decoder. The parameters of the convo-
lutional layer in the Conv Block are as follows: kernel size of
(3,2), stride of (2, 1) and padding of (0, 1). The parameters of
the deconvolutional layer in the DeConv Block are as follows:
kernel size of (3,2), stride of (2, 1) and padding of (0, 0) except
that (1, 0) was used for the 4th layer; the activation function
of the last layer is ReLU, and the other layers are ELU. The
numbers of feature maps in the encoder was 1 → 16 → 32
→ 64 → 128 → 256, and the numbers of feature map in the
decoder were 512 → 256 → 128 → 64 → 32 → 1. A Linear
Block contained one linear layer.

For baseline methods, we tried 32ms, 16ms, and 8ms
spectrogram as input features for CRN. With different input
feature dimensions, the dimensions of multiple bandwidth
spectrograms will also have different dimensions after the
convolutional processing, which will affect the number of

1https://datashare.ed.ac.uk/handle/10283/2791
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TABLE I
RESULTS OF DIFFERENT ENHANCEMENT SYSTEMS: 8MS (16MS, 32MS)
FEAT. REPRESENTS THAT 8MS (16MS, 32MS) FEATURE AS INPUT AND

OUTPUT FEATURE; 8MS (16MS) AUX. REPRESENTS THAT THE AUXILIARY
FEATURE IS 8MS (16MS); 8, 16MS AUX. REPRESENTS THAT THE

AUXILIARY FEATURES ARE BOTH 8MS AND 16MS SPECTROGRAMS.

SYSTEMS SIG BAK OVRL PESQ
noisy (original) 3.35 2.44 2.63 1.970

CRN

8ms feat. 3.61 2.92 2.92 2.264
16ms feat. 3.62 3.07 3.02 2.481
32ms feat. 3.51 2.98 3.02 2.563

+ linear 3.56 3.14 3.01 2.502

MI-F
8ms aux. 3.69 3.25 3.16 2.657
16ms aux. 3.61 3.14 3.07 2.568
8, 16ms aux. 3.54 3.20 3.03 2.563

MI-L
8ms aux. 3.51 3.19 3.03 2.607
16ms aux. 3.71 3.18 3.13 2.593
8, 16ms aux. 3.81 3.22 3.22 2.662

nodes in the LSTM layers. For the input of 32ms spectrogram
1,792 LSTM layer nodes were used; 768 nodes for 16ms
spectrogram and 256 nodes for 8ms spectrogram. All models
had two LSTM layers. In order to make a fair comparison
by considering the effect of the Linear Block, we add Linear
Blocks after each Conv Block for the 32ms spectrogram
baseline (+ linear), which is shown in Fig. 2–(b).

To evaluate the performance of each method, we used SIG
(values range from 1 to 5, higher value indicates clearer and
more natural with less degradation)[27], BAK (values range
from 1 to 5, higher value indicates less intrusive of back-
ground noise)[27], OVRL ([1=bad, 2=poor, 3=fair, 4=good,
5=excellent])[27] and the perceptual evaluation of speech
quality (PESQ) [27], [28].

A. Effect of Different Bandwidth

Table I shows the results of different SE systems. SE
systems were greatly affected by the bandwidth of input
and output features. Compared with the “16ms” and “8ms”
systems, the “32ms” system obtains the best PESQ. With the
increase of the bandwidth, the PESQ score tends to decrease.
However, the wideband systems had the better speech signal
recovery according to SIG, but the “8ms” system had the
worst performance in suppressing intrusion noise (BAK) and
overall signal recovery (OVRL). Due to the transient nature,
the speech signal is periodic in the range of vowels. The “8ms”
spectrogram is too short to cover transient stability, thus the
“8ms” system had the worst performance.

TABLE II
THE INPUT DIMENSION (32MS, 16MS, 8MS) OF LINEAR BLOCK IN

DIFFERENT ENCODER LAYERS: WE USE THE OUTPUT DIMENSION OF CONV
BLOCK (n) × THE NUMBER OF FRAMING m.

Encoder Layers 32ms 16ms 8ms
1 128 × 1 64 × 3 32 × 7
2 63 × 1 31 × 3 15 × 7
3 31 × 1 15 × 3 7 × 7
4 15 × 1 7 × 3 3 × 7
5 7 × 1 3 × 3 1 × 7

B. Effect of Linear Block

We directly added a Linear Block to the 32ms-based system
for fair comparisons. A Linear Block was added after each
Conv Block in the encoder without introducing auxiliary
information of other bandwidths. The results in Table I show
that adding Linear Blocks slightly improved SIG and BAK
scores. However, OVRL and PESQ of the enhanced speech
signal are degraded.

C. Effect of MI-F

In the MI-F method, a Linear Block is added to the last
layer of the encoder. The experimental results in Table I show
that the best performance was obtained when using the “8ms
aux.”. With “16ms aux.” and “8, 16ms aux.”, SIG, BAK, and
OVRL were improved but the improvement of PESQ was
limited. The results show a trend that “8ms aux.” was better
than “16ms aux.”, and “16ms aux.” was better than “8, 16ms
aux.”. We reason that it is difficult for a single linear layer
to incorporate a lot of information. Table II shows the input
dimension of the Linear Block in different encoder layers.
The 16ms spectrogram contains 9 dimensions (3×3) in the
fifth encoder layer, while there are only 7 dimensions (1×7)
for the 8ms spectrogram. High-dimensional (9-dimensional
embedding for 16ms; 16-dimensional embedding for 8, 16ms
aux.) features are not well fused by the single linear layer,
resulting in a limited performance improvement.

D. Effect of MI-L

In the MI-L method, a Linear Block is added after each
Conv Block in the encoder for information fusion. The exper-
imental results in Table I show that the best performance was
obtained when using the “8, 16ms aux.”, while “8ms aux.”
and “16ms aux.” had limited improvement for PESQ. When
8ms and 16ms spectrograms were used into the network as
auxiliary information simultaneously, all evaluation measures
were greatly improved. This shows that with layer-by-layer
fusion the different spectral information was fused well.

E. Difference Between MI-F and MI-L

In both MI-F and MI-L, “8ms aux.” achieved better perfor-
mance than “16ms aux.”. Compared with the 16ms spectro-
gram, the 8ms spectrogram has a larger difference from the
32ms spectrogram. Therefore, spectral information with larger
differences is more effective. In addition, with sufficient fusion
capability, more information can lead to better performance.
MI-L outperforms MI-F on all evaluation measures. Besides,
MI-F needs the fusion layer to have a smaller dimension,
while MI-L needs the fusion layer to have a larger dimension.
Furthermore, the auxiliary spectrogram of MI-F needs to be
much different from the main enhanced spectrogram, while
auxiliary spectrograms of MI-L are required to have more
complete information.
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Fig. 5. Spectrograms of different SE systems.

F. Effect of Proposed Methods on Spectrogram

Fig. 5 shows the spectrograms of different SE systems. The
main difference between these SE methods is the restoration of
high frequencies and the processing of silent segments. Part A
is a silent segment, “CRN” lost a lot of energy, while “MI-L”
has better signal recovery. Furthermore, both “MI-F” and “MI-
L” achieved recovery of sharper high-frequency detail. For Part
B, “MI-F” and “MI-L” had better high-frequency recoveries
than “CRN”. For Part C, some noise was not removed in all
enhanced spectrograms, but “MI-L” contains less noise. We
reason that the time-varying information provided by the wide-
band spectrogram helps narrowband spectrogram restoration.
Furthermore, although the PESQ of “MI-F” was the same as
that of “MI-L”, there is still some information loss in “MI-
F”. Spectrograms with more bandwidth as input features help
preserve spectral information.

V. CONCLUSIONS

In this paper, we aim to improve a narrowband-based SE
system with the wider bandwidth spectrograms as auxiliary
information. We propose multi-input final fusion (MI-F) and
multi-input layer-by-layer fusion (MI-L) to incorporate infor-
mation from different bandwidth spectrograms. MI-F adds a
Linear Block only to the last layer of the encoder, while MI-L
adds Linear Block after each Conv Block in the encoder for
information fusion. With better fusion ability, MI-L achieves a
better performance. Moreover, systems with larger differences

in bandwidth achieve better performance. The proposed meth-
ods achieved better spectral recovery on silent segments and
high-frequency spectrograms.
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