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ABSTRACT

Automatic speech recognition (ASR) systems often does not perform
well when it is used in a different acoustic domain from the training
time, such as utterances spoken in noisy environments or in differ-
ent speaking styles. We propose a novel approach to cross-domain
speech recognition based on acoustic feature mappings provided by
a deep neural network, which is trained using nonparallel speech
corpora from two different domains and using no phone labels. For
training a target domain acoustic model, we generate ”fake” target
speech features from the labeleld source domain features using a
mapping Gf . We can also generate ”fake” source features for test-
ing from the target features using the backward mapping Gb which
has been learned simultaneously with Gf . The mappings Gf and Gb

are trained as adversarial networks using a conventional adversarial
loss and a cycle-consistency loss criterion that encourages the back-
ward mapping to bring the translated feature back to the original as
much as possible such that Gb(Gf (x)) ≈ x. In a highly challeng-
ing task of model adaptation only using domain speech features, our
method achieved up to 16 % relative improvements in WER in the
evaluation using the CHiME3 real test data. The backward mapping
was also confirmed to be effective with a speaking style adaptation
task.

Index Terms— acoustic model adaptation, unsupervised train-
ing, speech enhancement, generative adversarial networks, cycle
consistency loss

1. INTRODUCTION

Deep learning-based hybrid acoustic models have drastically im-
proved the performance of automatic speech recognition (ASR) [1].
It was recently reported that even a human-level recognition perfor-
mance can be achievable when they are coupled with bidirectional
LSTMs and very deep convolutional networks with residual con-
nections [2][3]. However, these excellent results are only guaran-
teed in the fortunate cases where a large amount of training data
matched to test data is available. This is why adaptation of acous-
tic models trained with a speech corpus in some domain to a new
target domain still remains one of the most actively investigated re-
search topics. Making manual transcriptions of speech is costly and
sometimes raises privacy concerns. Therefore, if an effective way of
unsupervised adaptation for acoustic models to a new domain were
established, which only requires acoustic data in the new domain, it
would make a great impact on the applicability os ASR in a variety
of real life situations. With an well-established unsupervised adap-
tation method, for example, ASR products such as intelligent speak-
ers and conversational robots can continue to improve their perfor-
mances even after shipping using acoustic signals recorded in users’
own operating environments.

There are a number of potential needs for domain mapping in
ASR. One example is a noisy speech recognition task. ASR in noisy
conditions was conventionally addressed by multi-condition training
of acoustic models using simulated noisy corpora, which is artifi-
cially generated by convolving room impulse responces and adding
noise to clean corpora. Another approach is acoustic feature en-
hancement in frontend using denoising autoencoders [4][5][6][7][8],
where mappings from noisy features to enhanced features are
learned using paired examples between clean and simulated noisy
corpora. The problem with these methods is that the mixing process
of speech and noise in real noisy conditions may have a highly
nonlinear nature, and the simulated data generated using linear
transformations described above has a very different characteris-
tics from real noisy data, which can limit the performances of the
methods based on simulated data. In fact, discrepancies between
the recognition performances for simulated and real noisy test data
have been reported in the literature [9][10]. Generating simulated
data also requires a considerable cost for carefully recording room
impulse responses and noise backgrounds in the target conditions
which can sometimes lead to an infringement of privacy. On the
other hand, annotating real noisy corpus is highly expensive, and
paired examples between clean and real noisy data can not be gen-
erated in principle, as in most of other adaptation problems such as
speaker or speaking style adaptation.

In this paper, we propose a novel approach to cross-domain
speech recognition requiring no corresponding examples between
source and target domains and no labels for the target domain cor-
pus. In the proposed method, acoustic models are trained using
”fake” target domain features translated from source domain fea-
tures using a complex nonlinear mapping provided by a variant
of generative adversarial networks (GANs) [11]. This network is
trained without supervision using source and target domain corpora.
The method does not require initial speech recognition results which
are crucial in typical retraining approaches for unsupervised acous-
tic model adaptation. Two notable design choices are incorporated
into the network including the cycle consistency loss criterion [12]
in the training to guide the network to retain useful information for
speech recognition in the translated features. In the experiment, we
also demonstrate that ”fake” source domain features generated by
an inverse mapping from target to source domain can contribute to
improve the speech recognition performance.

2. ACOUSTIC MODEL ADAPTATION WITH
GENERATIVE ADVERSARIAL NETWORKS (GANS)

The problem we address in this paper is summarized as follows.
We have two kinds of data which belong to two distinct domains,
namely, ”source” and ”target” domains. For the source domain data,
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we have manual transcriptions which can be used for training acous-
tic models, but we do not for the target domain. We also do not have
paired examples between these two domains. Our objective is to
improve ASR performance for test data which belongs to the target
domain under these constraints.

This is a very common situation we encounter frequently. In the
following parts of this section, we particularly take an ”noise-robust
ASR” example where the source domain is clean speech and the tar-
get domain is noisy speech in explaining our proposed method for
understandability. Our approach is to train acoustic models using
”fake” noisy features translated from clean features for which we
have transcriptions. The most important issue here is how to gen-
erate a realistic ”noisy” version of clean features in the absence of
paired examples between two domains. This is a much more diffi-
cult setting than in conventional denoising autoencoder approaches
([13][14][4][5][6][7][8]).

We propose to use the concept of generative adversarial net-
works (GANs) [11] and cycle consistency adversarial networks (cy-
cle GANs) [12], which recently yielded impressive results in the im-
age processing area, for generating translated data. Moreover, we
introduce an enhancement in the architecture of GANs in order to
achieve desirable characteristics for ASR in translated features.

2.1. Generative adversarial networks for domain translation

GAN is a framework for estimating generative models via an adver-
sarial process, in which two models G and D are simultaneously
trained. G is a generative model that captures the data distribution,
and D is a discriminative model that estimates the probability that a
sample came from the training data rather than G. While the original
GANs generate data from latent variables, we consider here a net-
work GS→T which transforms speech from a domain S (e.g. clean
speech) to some other domain T (e.g. noisy speech). This gener-
ator network GS→T is trained such that the distribution ptgt(t) of
speech features t in T is indistinguishable from the distribution of
”fake” target domain speech features GS→T (s), where s is subject
to the source domain distribution psrc(s). In the GAN framework,
this is achieved by optimizing the following minimax criterion:

G∗
S→T = arg min

GS→T

max
DT

LGAN(GS→T , DT ), (1)
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Fig. 2. Proposed cycle GAN-based architecture for acoustic feature
transformation

where an adversarial objective LGAN(GS→T , DT ) is defined as:

LGAN(GS→T , DT ) = Et∼ptgt(t)[logDT (t)] +

Es∼psrc(s)[log(1−DT (GS→T (s)))], (2)

and DT is a discriminator network with its output representing the
probability that the input comes from T . By the optimization cri-
terion (1), DT is trained to maximize DT (t) for t ∈ T and mini-
mize DT (GS→T (s)) for fake data GS→T (s) generated from s ∈ S,
while GS→T is trained to maximize DT (GS→T (s)).

2.2. Cycle consistency loss

GANs may provide us with a powerful way to translate data
across domains without parallel examples, but they are too under-
constrained for keeping discriminative information required in ASR.
For example, information such as formant trajectories needs to be
preserved after domain translation, but the adversarial loss (2) may
not enough for it.

Therefore, we choose to train not only a source to target map-
ping GS→T , but also a target to source mapping GT→S in a con-
sistent way by introducing a constraint that these mappings should
be ”cycle consistent” [12], namely, the data translated by GS→T is
mapped back by GT→S to a source domain feature as close as pos-
sible to the original feature, and vice versa. Thus, we expect that the
information for reconstructing the input data in either domain is kept
in the domain-transformed data. We can incentivize this behavior
using a cycle consistency loss:

Lcyc(GS→T , GT→S) =

Es∼psrc(s)[∥GT→S(GS→T (s))− s∥1]
+Et∼ptgt(t)[∥GS→T (GT→S(t))− t∥1]. (3)

By paring this cycle consistency loss with the standard adversar-
ial loss, we encourage GS→T (GT→S(t)) ≈ t and GT→S(GS→T (s)) ≈
s. The structure of GANs with the cycle consistency loss is depicted
in Fig. 1.
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Fig. 3. Network architecture for FS→T and FT→S

The full objective for training GS→T , GT→S , DS and DT is:

L(GS→T , GT→S , DS , DT ) = LGAN(GS→T , DT )

+LGAN(GT→S , DS)

+αLcyc(GS→T , GT→S). (4)

2.3. Modified network architecture for acoustic feature trans-
formation

We also consider to add more structure to our network architecture
for further improving the quality of the transformed data.

We build two distinct paths in each of GS→T and GT→S , which
will be summed together to generate transformed data (Fig. 2). The
first path is basically an identity mapping, which explicitly guaran-
tees that the detailed structure in the input data will be preserved after
the domain translation. The second has a generative network FS→T

or FT→S which has a capacity to learn a complex nonlinear map-
ping like generators in standard GANs. With the existence of the
first identity mapping path, the generative networks in the second
path are enforced to learn devotedly the ”difference” between two
domains. Submapping-wise scaling factors λ and µ are introduced
for adjusting the intensity of each component before summation.

Now the mappings GS→T and GT→S are reformulated as:

GS→T (s) = λS→T ⊙ FS→T (s) + µS→T ⊙ s, (5)
GT→S(t) = λT→S ⊙ FT→S(t) + µT→S ⊙ t, (6)

where ⊙ means element-wise multiplication.

3. IMPLEMENTATION

3.1. Network architecture

Following the description in the implementation part of [12], the ar-
chitecture for the generative networks FS→T and FT→S (Fig. 3) is
adapted from Johnson et al. [15]. A feature map of size 40x11x1
consisting of eleven frames of 40-channel log Mel-scale filterbank
(lmfb) outputs is used as input to the networks. Each generative net-
work has two subnetworks for downsampling and upsamping. The
downsampling subnetwork consists of three convolutional layers and
nine residual blocks [16]. Each residual network is composed of
two stride-1 convolutions and a residual connection which bypasses
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Fig. 4. Network architecture for DS and DT

them. On the other hand, the upsampling part has two deconvolu-
tional layers followed by one stride-1 convolution. The filter and
stride size in each convolution layer are depicted in Fig. 3. For ex-
ample, (conv,3x3,1x1) means a convolution layer with a filter of size
3x3 and a stride of size 1x1. Note that we chose a smaller size for
convolutional filters than in [12], because the size of our input im-
ages composed of lmfb features is much smaller than those in typical
image processing applications. We used instance normalization [17]
in layers specified in Fig. 3 before applying nonlinearities. Leaky
ReLU nonlinearities with a slope of 0.2 are used in all layers with
the exception of the output layer, which uses an identity function.

The architecture for the discriminators DS and DT is depicted in
Fig. 4. The network has two convolutional layers, followed by three
fully-connected layers. While Leaky ReLU nonlinearities are also
used in the discriminators, we did not apply instance normalization
here as suggested in [18].

3.2. Training procedure

We used Wasserstein GANs (WGANs) [19] for building our gen-
erative networks instead of standard GANs to stabilize our model
training procedure and avoid training problems inherent in GANs
such as model collapse. Gradient penalties recently proposed in [18]
are also used in training WGANs instead of the weight clipping tech-
nique [19] to enforce the Lipshitz constraint. Accordingly, the full
objective (4) is modified as:

L(GS→T , GT→S , DS , DT ) = LWGAN(GS→T , DT )

+LWGAN(GT→S , DS)

+αLcyc(GS→T , GT→S), (7)

where LWGAN(GS→T , DT ) is:

LWGAN(GS→T , DT ) = Et∼ptgt(t)[DT (t)]

−Es∼psrc(s)[DT (GS→T (s))]

−βEt̂∼ptgt(t̂)
[(∥∆t̂DT (t̂)∥2 − 1)2]

−βEŝ∼psrc(ŝ)[(∥∆ŝDS(ŝ)∥2 − 1)2], (8)

where, for example, Et̂∼ptgt(t̂)
[(∥∆t̂DT (t̂)∥2−1)2] is the gradient

penalty for critic1 DT . We defined t̂ as t̂ = at+ (1− a)GS→T (s)
using a random variable a ∼ U(0, 1), s ∼ psrc(s) and t ∼ ptgt(t),
as suggested in [18]. More detailed explanations on WGANs and

1When we use WGANs, we call the networks DS and DT ”critics”, be-
cause they actually don’t discriminate anything.
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gradient penalties, which are out of scope of this paper, are found
in [19] and [18].

Following the recipes in [19] and [18], we update critics DS and
DT ncritic times before updating GS→T and GT→S for each mini-
batch iteration. Note that while the critics are trained to minimize
−L(GS→T , GT→S , DS , DT ), the generators are trained to mini-
mize L(GS→T , GT→S , DS , DT ). We set ncritic to be 4 in all our
experiments. We used the Adam optimizer [20] with a minibatch
size of 256 for each of source and target domain data. All network
parameters are initialized with random values with the exception of
λ and µ, which were initialized with 1, and trained with a learning
rate of 0.0001 for 20 epochs. We set α in (7) to be 10, and β in (8)
to be 10.

4. EXPERIMENTAL EVALUATION

We evaluated the proposed methods through two domain adaptation
tasks, namely, noise-robust speech recognition and speaking style
adaptation.

4.1. Noise-robust speech recognition

First, we evaluate the proposed method on a noisy speech recog-
nition task, specifically the 1-channel track of the fourth CHiME
Challenge [10], where the source domain is clean speech and target
domain is noisy speech. The ”source” clean training set consists of
7,138 utterances from WSJ0 corpus. The ”target” noisy training set
consists of 1,600 real noisy utterances and 7,138 simulated noisy ut-
terances generated by artificially mixing the clean training set with
noise backgrounds. There are four different types of noisy environ-
ments, namely, bus, street, cafe, and pedestrian area [10]. A 440-
dimensional feature vector consisting of 11 frames of 40-channel
lmfb outputs is used as input to domain translation networks, as de-
scribed in Section 3.1. The acoustic feature vectors in each set are
normalized to have a zero mean and unit variance, and shuffled at
frame level. For simplifying our training procedure, we used the
same amount of shuffled data for both domains. We trained a CNN-
HMM acoustic model [21] using the clean training set described
above. It has two stride-1 convolutional layers, three fully-connected
layers with 2k rectified linear units (ReLUs) [22] and a softmax out-
put layer with 2k nodes. Each convolutional layer is followed by a
stride-2 max pooling layer. The first convolutional layer has 180 fil-
ters of size 5x11, and the second one has 180 filters of size 5x1. The
same 440-dimensional lmfb-based feature vector is used as input to
the acoustic model as used for the domain translation networks, and
we can directly input the translated features to the acoustic model.
For decoding, we used the Kaldi WFST decoder [23]. The language
model is the standard WSJ 5k trigram LM. We used the real noisy
evaluation set (”et05 real noisy”) consisting of 1,320 utterances for
evaluating the methods.

We present some examples of comparative domain translation
results with the proposed approaches. Fig. 5 depicts an lmfb spec-
trogram of noisy speech and its domain transformation results us-
ing three different methods2. Fig. 5 (b) is the ”fake” clean speech
translated from the original noisy speech (a), using GT→S trained
only with the Wasserstein adversarial loss. Note that when the cycle
consistency loss is not used, GS→T and GT→S are trained indepen-
dently, because they cannot affect each other. Obviously, (b) is to-
tally different from the original utterance (a), and it hardly looks like

2Although a domain translation output vector consists of 11 frames of 40-
channel lmfb features, we show here only the sequence of the center frames.
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Fig. 6. An example of clean utterance and the translated ”fake” noisy
data with the proposed method. The vertical axis designates lmfb
channel numbers and the horizontal axis designates the time frames
with 10ms shift.

human speech since it does not have formant trajectories. Compared
with (b), the translated utterance with a GAN trained using the cycle
consistency loss (c) has much more detailed structures as expected.
It looks ”cleaner” than (a) because it has more blue regions, and it
is much more like human speech than (b). However, the apparent
phonetic structure in the original data seems to be totally lost in (c),
which is fatal for ASR. (d) is the translated data with a GAN which
has our proposed network architecture and was trained using the cy-
cle consistency loss. Noise is effectively suppressed and speech is
enhanced here, and more importantly, a consonant-vowel phonetic
structure is clearly seen in the translated spectrogram.

In Fig. 6, we show a ”fake” noisy data translated from a clean
utterance using GS→T . We separately present the outputs of two
subnetworks (cf. Fig. 2) in order to show the mixing process. (a)
is the output of the identity mapping component, which is of course
identical to the input s. (b) is the output of the generative network
component FS→T (s), and (c) is the resulting noisy version of the
input utterance generated by simply summing (a) and (b) together.
In this example, we chose the network trained with fixed weights,
λ = µ = 1, for the purpose of demonstration. We can see that
our method can make up a quite realistic noisy utterance which has
similar characteristics to a real noisy data such as (a) in Fig. 5.

We show the speech recognition results by our proposed meth-
ods in Table 1. First, we evaluated the performance of speech en-
hancement using the noisy to clean mapping GT→S . Speech recog-
nition was performed using the acoustic features of the real noisy test
set transformed using GT→S and the baseline acoustic model trained
using the clean data. By comparing the results for the original noisy
data (row (1)) and the enhanced data (row (3)), we see that the pro-
posed method effectively enhanced the acoustic features and yielded
an improvement of 3.7 points in WER. Moreover, by introducing the
submapping-wise scaling factors λ and µ, we had a further improve-
ment of 0.78 points (row (4)). We also show the result for a GAN
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(d) translated ”fake” clean data with proposed method

Fig. 5. An example of noisy utterance and the translated ”fake” clean data with various methods. The vertical axis designates lmfb channel
numbers and the horizontal axis designates the time frames with 10ms shift.

138



Table 1. Performance of proposed methods (WER(%))
acoustic model feature cycle loss λ and µ WER ID

no adapt. no adapt. - - 41.08 (1)
no adapt. adapt. with GT→S no 1, 1 55.45 (2)

yes 1, 1 37.34 (3)
yes trained 36.56 (4)

adapt. with GS→T no adapt. yes 1, 1 35.98 (5)
yes trained 34.31 (6)

0 50 100 150
0
5
10
15
20
25
30
35

(a) original CSJ-SPS data
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(b) translated ”fake” JNAS data

Fig. 7. An example of CSJ-SPS (simulated public speech) utterance
and the translated ”fake” JNAS (read speech) data with the proposed
method. The vertical axis designates lmfb channel numbers and the
horizontal axis designates the time frames with 10ms shift.

Table 2. Performance of proposed methods applied to speaking style
adaptation (WER(%))

source target feature WER
JNAS CSJ-SPS no adapt. 26.47

adapt. with GT→S 25.93
CSJ-APS CSJ-SPS no adapt. 17.15

adapt. with GT→S 16.60

with our proposed architecture trained without the cyle consistency
loss in row (2), from which we understand that the constraint that the
mappings are cycle-consistent is essential for the desired quality in
the translated features. Next, we evaluated the ASR performances of
the adapted acoustic models. These models were trained using the
”fake” noisy data translated with GS→T . From the results in row (5)
and (6), we understand that the model adaptation approach is more
effective than the feature enhancement approach (row (3) and (4)),
and training λ and µ is also beneficial for adapting acoustic mod-
els. The best model achieved WER of 34.35 % which is a 16 %
relative improvement from the baseline. We see this outcome quite
promising as a result of our first trial of unsupervised domain map-
ping, even though it is not yet comparable to the WER of 21.15 %
which is achieved by the traditional training approach in which we
make direct use of labeled simulated noisy data for acoustic model
training.

4.2. Speaking style adaptation

We also applied the proposed method to speaking style adaptation of
acoustic models to improve the ASR performance for test data with
a different speaking style from the training data.

We used three corpora with different speaking styles, namely,

JNAS (Japanese Newspaper Article Sentences), and APS (Academic
Public Speaking) and SPS (Simulated Public Speaking) subcorpora
from the CSJ (Corpus of Spontaneous Japanese). JNAS is a read
speech corpus, and utterances in CSJ-APS and CSJ-SPS have spon-
taneous speaking styles. CSJ-APS consists of live recordings of aca-
demic presentations in public, and speeches in CSJ-SPS were pre-
sented in front of a small audience and in a relatively relaxed atmo-
sphere. Speaking style transformation experiments were conducted
using JNAS and CSJ-APS as source domains and CSJ-SPS as a tar-
get domain. We used the same amount of data (20 hours) for each
corpus in training the GANs.

Fig. 7 depicts a lmfb spectrogram of a CSJ-SPS utterance trans-
formed to JNAS style. While a number of differences between the
original and transformed data can be observed, the most evident one
is the enhanced formant structures in the region from the 20th to
around the 50th frame, which corresponds to a filler word consist-
ing of one long vowel ”e:”. It is a natural consequence considering
that a more articulately pronounced vowel is a characteristic of read
speech.

We present speech recognition experiment results using the
adapted acoustic features in Table 2. The acoustic models were
trained using source domain data. The WERs were improved by 0.5
points by adapting acoustic features to the source domains. The most
remarkable point is that these improvements were obtained using
only acoustic signals of the target domain without any supervision
labels. From these results, we understand that our method can be
applied to speaking style adaptation as well as noise-robust acoustic
model training. Note that we did not conduct acoustic model adap-
tation with GS→T in the speaking style translation experiments due
to the limited time.

5. COLNCLUSION

We proposed a novel approach to noise-robust acoustic training with
GANs which are trained with a cycle consistent loss and have a spe-
cially designed architecture for retaining discriminative information
in translated data. We demonstrated the effectiveness of the proposed
method in noisy speech recognition and speaking style adaptation.

This is our initial attempt to apply deep generative networks for
speech recognition. We are interested in extensions of the proposed
methods such as introduction of recurrent structures for incorporat-
ing longer context information. Another promising direction is to
use class information in training GANs [24] to enhance discrim-
inability in translated data.
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