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Abstract—This paper presents an end-to-end approach for
generating readable and clean text directly from speech signal.
While conventional automatic speech recognition (ASR) systems
are designed to faithfully reproduce utterances word-by-word,
we propose a model that emulates the way a human tran-
scriber/editor creates a clean transcript from speech by skipping
fillers, substituting colloquial expressions with more formal ones,
inserting punctuation, and performing other types of corrections.
An evaluation using 700-hour Japanese Parliamentary speech
demonstrates the effectiveness of the proposed approach in
generating clean texts suitable for human consumption. We also
show that forward-backward decoding and multitask learning
leveraging approximate faithful transcripts significantly improve
the performance of the direct mapping.

I. INTRODUCTION

Transcribing and archiving meetings, lectures and presenta-
tions is one of the important applications for automatic speech
recognition (ASR). In order to make a truly useful archive,
we need to not only achieve a low recognition error rate,
but also consider the readability of system outputs. Since
conventional ASR systems are designed to faithfully reproduce
all words actually spoken in an utterance, their outputs are not
necessarily easy to read and comprehend due to the existence
of spoken language phenomena. For example, spontaneous
utterances contain not only fillers and disfluencies, but also
redundant and colloquial expressions even when fluently spo-
ken. They are often ungrammatical and lack punctuation marks
at all. Consequently, a considerable amount of manual edits
are required for making final texts appropriate for a written
record from faithful transcripts or ASR results [1].

To address this problem, there have been a number of stud-
ies on automatic transformation from spoken to written lan-
guage. They include disfluency detection and removal [2][3],
punctuation insertion [4][5][6], and more general speaking
style transformation (SST) [7][8][9][10]. A majority of these
works rely on machine learning methods such as noisy chan-
nel models, CRFs, SVMs, and deep neural networks. These
models are typically trained on annotated texts or a parallel
corpus of faithful transcripts and corrected texts independently
from speech recognition models.

In this paper, we propose an end-to-end (e2e) approach for
generating clean texts directly from speech in a manner similar
to the way a human transcriber/editor creates a written-style
transcript. This direct mapping learns on pairs of speech and
the corresponding text from human-made written records, un-

like a conventional ASR model which is trained using faithful
transcripts as target. To perform this apparently complicated
task, we make use of the advantage of an attention-based
model that can flexibly attend to only a relevant potion of
the input speech to predict the label at each decoding step.
Since the proposed model does not require expensive faithful
transcripts at all, we can easily build a large amount of training
data. Thus, our approach addresses two major problems with
the text-based SST: data sparsity and accumulation of errors
caused by cascading independently optimized ASR and SST. It
is also beneficial to be able to incorporate acoustic information
to SST [2][9].

We have been developing a transcription system for the
Japanese Parliament (Diet) [11]. In the current version of this
system, which has been in official operation from2011, we
use a conventional ASR model to generate an initial draft,
from which professional editors make final meeting reports.
The main aim of this paper is to fundamentally update this
transcription system with the proposed e2e approach, in order
to reduce the cost and time required in building models
and making clean transcripts. A contribution of this paper
is that we build and evaluate the model based on a large
collection of parliamentary speeches in such a real application
scenario, which we believe is informative for developing other
transcription systems.

II. DATA SET

We use a corpus from the House of Representatives of
the Diet (national Parliament) of Japan [12]. Parliamentary
speeches require a relatively large number of stylistic trans-
formations, and thus are appropriate for evaluating the perfor-
mance of an SST model [9]. Since the official records of the
meetings are open to public1, we can get the learning target
of our model as a ground-truth.

A. Differences between faithful and clean transcripts

Since the written records are made for the purpose of
readability and documentation, there is a large difference
between what was actually spoken in the meetings and the
clean text in the written records, which accounts for 16% of
words on average [11]. Fig.1 depicts an example of the pair of
a faithful transcript and the corresponding text from the official

1http://kokkai.ndl.go.jp/
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あのー

filler colloquial discourse marker

del sub ins del

punctuation

faithful

written records

シンギュラリティーって のは 私の理解では ですね

シンギュラリティーという のは 私の理解では、

“The singularity is, in my understanding” 

Fig. 1. An example of the pair of a faithful transcript and the corresponding
text in the ofcial written records

records. We can see that a filler word (“e:”) and discourse
maker (a sentence-end expression “desu ne”) were deleted, a
colloquial expression was substituted with a formal one (from
“tte” to “to iu”), and a comma was inserted. As shown in this
example, most of the corrections are represented as simple
editing of insertions, deletions or substitutions of one or two
words2. In general, the major types of edits performed for
creating the Parliamentary meeting records are as follows.

a) Deletion: Fillers are completely removed. Discourse
markers are often removed, but they can be a part of flu-
ent speech and are kept in some contexts. The earlier part
(reparandum) of a repeat or repair is deleted.

b) Substitution: Colloquial expressions are corrected to
make a formal sentence.

c) Insertion: Insertion: Punctuation is inserted for im-
proving readability. Function words dropped in spoken lan-
guage are recovered to make a grammatical sentence.

A more detailed analysis on the same corpus along with
the precise occurrence rate of each correction type is found
in [9][11].

B. Generation of utterance-level pair data

We need utterance-level pair data of speech and its clean
text for training the direct model. For generating the pair data,
we first divided the long continuous speech of each meeting
into short segments by pauses of longer than 0.2s. This
was performed using the short pause segmentation algorithm
implemented in the Julius decoder [13]. Then, we identified
the corresponding part in the official written records to each
speech segment using the following simple procedure.

We decoded each speech segment using a constrained lan-
guage model (LM), which we will explain in Section 3.2, and
a triphone DNN-HMM trained on speech from past meetings.
We concatenated the word level recognition results for all
segments and inserted a segment boundary token between two
consecutive segments. This word sequence was aligned with
the full text in the written records of the meeting. The clean
text was segmented at word boundaries which corresponded
to the segment boundary tokens to extract the target labels for
each speech segment.

2Human editors also perform more complex corrections which consider the
sentence structure or the meaning of the text. However, they are less common
and beyond the scope of the proposed scheme.

III. METHOD

Our goal is to construct a model that directly maps a
speech signal to a clean text. For this goal, a model needs
to skip regions in the speech that do not have relevant
labels (e.g. fillers) and insert tokens which do not have the
corresponding acoustic events (e.g. punctuation). Therefore,
we adopt an attention-based model among other choices such
as a hybrid DNN-HMM [14] or an e2e model based on the
CTC loss [15][16]. We also propose two methods to alleviate
the difficulty of the direct mapping.

A. Attention-based model

In attention-based speech recognition, we model seq2seq
mapping between speech and a label sequence using an
encoder-decoder architecture [17][18]. This architecture has
two distinct sub-networks. One is the encoder which trans-
forms an acoustic feature sequence to a sequential represen-
tation of the same length T . Based on this encoded acoustic
information, the other decoder sub-network predicts a label
sequence whose length L is usually shorter than the input
length T . The decoder uses only a relevant portion of the
encoded sequential representation for predicting a label at each
time step using the attention mechanism, which is why we
adopted the attention-based model for performing the direct
generation of a clean text.

More formally, the encoder transforms input acoustic fea-
tures X = (x1, ..., xT ) to a sequential representation H =
(h1, ..., hT ) that summarizes the characteristics of the input.
In the following decoding step, the hidden state activation of
the RNN-based decoder at the l-th time step is computed as:

rl = Recurrency
(
rl−1, gl,yl−1

)
, (1)

where gl and yl−1 denote the glimpse at the l-th time step and
the predicted label at the previous step, respectively. gl is a
weighted sum of the encoder output sequence as:

gl =
∑
t

αl,tht, (2)

el,t = Score(rt−1,ht,αl−1), (3)

αl,t = exp(el,t)/
T∑

t′=1

exp(el,t′). (4)

where αl,t is an attention weight of ht. Using gl and rl−1, the
decoder predicts the next label yl as:

yl ∼ R tanh (Prl−1 +Qgl) . (5)

In this research, we used words as a recognition unit of the
seq2seq model, since it provides the high decoding speed and
a simplified architecture [19][20][21].
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B. Direct generation of clean transcript from speech

We train an attention-based encoder-decoder model using
clean texts from the official written records as target. This
single model simultaneously performs ASR and all types of
corrections described in Section 2.1.

From another point of view, this approach can be considered
as an e2e version of the lightly supervised (LSV) training
of acoustic models [22][23]. Unlike the conventional LSV,
which generates phone labels for training HMM-based models
through speech recognition, we make a direct use of written-
style texts as the learning target of a seq2seq model. Therefore,
our labels are certainly free from recognition errors. Naturally,
the proposed approach shares the advantage of the LSV
methods that drastically reduces the cost for constructing
training data by eliminating the need for expensive faithful
transcripts.

We also note that our approach is deeply related to the e2e
speech translation that predicts a target language text directly
from source language speech [24].

C. Multitask learning with approximate faithful transcripts

The direct model needs to perform a more difficult task
than either of ASR and text editing. To ease this difficulty, we
propose a multi-task learning method to guide the network
leveraging the target label sequences for the standard ASR
task. Since faithful transcripts are generally not available for a
large corpus of spontaneous speech, we exploited the following
LSV method [23] to generate an approximation of faithful
transcripts.

For every speaker turn in all meetings, we first compute
word ngram counts in the corresponding text segment of
the written records. These n-grams capture the words and
word contexts specific to the particular turn. Then, we convert
them to spoken-style so that we can recover spoken language
phenomena which are not present in the original clean texts, by
applying the LM style transformation based on the framework
of statistical machine translation [25] as:

P (V ) = P (W ) · P (V |W )

P (W |V )
, (6)

where P (V ) and P (W ) are a spoken-style and written-style n-
gram probabilities, respectively. The conditional probabilities
P (V |W ) and P (W |V ) are estimated using a parallel corpus
of faithful transcripts and the corresponding clean texts. This
translation-based method has a significant advantage that the
amount of faithful transcripts required for estimating these
probabilities is much smaller than for training LMs from
scratch. We actually used a small corpus consisting of only
737K words from meetings held in 2003 in all LSV-related
experiments.

Speech recognition using the turn-specific LM obtained
from the above procedure can recover the faithful transcript of
an utterance with a high accuracy. This recognition result is
provided to the additional output layer for the ASR subtask in
order to help the convergence of the direct mapping task. We

to kono naN te yu: N   desu ka

disfluent  region

baseline

direct

lmfb

Frame index (10ms)

transcript cho:fuku suru bubuN mo aru

Fig. 2. Attention weights from the baseline and the proposed direct model for
an utterance with a long disfluent region

specifically used character-level transcripts and the CTC loss
for this subtask to promote the efficiency of the MTL [21][26].

D. Forward-backward decoding

The standard attention-based ASR model decodes from
the start toward the end of an utterance mostly based on
acoustic information in a unidirectional way. In contrast, we
should perform text editing or rewriting considering the whole
structure of a complete sentence. For example, the comma in
Fig.1 was inserted to separate the subject and its modier part
of the sentence. Clearly, this comma insertion could not be
performed without recognizing the following several words.
This implies that right contexts are as important as left contexts
in text correction.

By taking this consideration into account, we exploit the
forward-backward attention decoder [27] to improve the cor-
rection performance. In this method, speech is decoded not
only from left-to-right, but also from right-to-left using a
dedicated backward decoder. Partial sentence candidates from
both decoders are concatenated based on the estimated occur-
rence time of each word to generate a new complete sentence.
Among all candidates, the best hypothesis is searched for
according to the combined probabilities of forward and back-
ward decoding. A more detailed description of the algorithm is
in [27]. We originally proposed this bidirectional decoding for
improving the attention-based ASR. However, it is potentially
more effective for the direct mapping to a clean text, since it
is crucial to look at both of left and right contexts in editing
text.

IV. EXPERIMENTAL EVALUATION

We evaluated the proposed approach on the Parliamentary
speeches from the House of Representatives of the Diet of
Japan recorded in 2015. The data were divided into the training
set consisting of 708-hour speech from 14 plenary sessions and
194 committee meetings, and the test set consisting of 20-
hour speech from 5 committee meetings with a wide variety
of topics. We built two baseline ASR models: an e2e model
based on the CTC loss and an attention-based seq2seq model.
These ASR models were trained on the labels generated by
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TABLE I
CHARACTER ERROR RATES BETWEEN SYSTEM OUTPUTS AND THE

OFFICIAL WRITTEN RECORDS (%)

error type

model del sub ins total

CTC ASR 5.1 5.2 12.0 22.2
attn. ASR 3.8 5.7 14.6 22.5
+ filler word removal 4.5 4.8 7.4 16.7

attn. ASR + attn. SST (cascade) 5.3 4.7 5.2 15.2

CTC direct 6.8 4.3 2.7 13.8
attn.direct 4.0 3.7 3.1 10.8
+ MTL 3.9 3.6 2.8 10.3
+ forward-backward decoding 3.2 3.3 2.7 9.2

the LSV method in Section 3.3. We built the proposed direct
model using an encoder-decoder architecture as described in
Section 3. For comparison, we also trained a direct mapping
model using the CTC loss. We used Pytorch [28] to train all
models.

We implemented the acoustic encoder in all attention mod-
els with a 5-layer bidirectional LSTM [29], while the decoder
consists of a one-layer unidirectional LSTM and a softmax
output layer. Similarly, the CTC models consist of a 5-layer
bidirectional LSTM and a softmax output layer. In the MTL
method, we added an CTC output layer for the ASR auxiliary
task on the top of the shared encoder in the attention-based
direct model. All LSTM layers have 320 memory cells. We
used label smoothing [30] to improve the optimization in
training the attention models. The vocabulary sizes of the
ASR baseline and the direct model are 21,455 and 21,573,
respectively. A 40-dimensional vector consisting of 40-channel
log Mel-scale filter-bank (lmfb) outputs was used as the
acoustic feature.

We used character error rates between the system outputs
and the text of the official written records as a metric for
the performance of generating a clean text from speech. The
results of all models are shown in TABLE I. Note that we
purposely excluded punctuation marks in calculation of these
error rates, because the ASR baselines have no chance to insert
punctuation.

A. Baseline ASR vs. direct model

Both ASR baselines gave high insertion error rates, which
reflects the fact that about half of all corrections performed
in making the written records are categorized as removal of
fillers [11]. Simply removing lexical fillers halved the insertion
errors of the ASR model (14.6% to 7.4%).

In contrast, the attention-based direct model yielded a very
low insertion error rate without any postprocessing (3.1%). To
illustrate this characteristic, Fig.2 depicts the attention weights
from the baseline ASR and the direct model for an utterance
in the test set with a long disfluent region. We can see that the
direct model successfully ignored all disfluencies, while the
baseline attended to all regions in the utterance. The direct
model significantly reduced not only insertion errors but also

substitution errors, and yielded a much shorter edit distance
to the reference clean text than the baseline ASR. It is also
interesting to see that the CTC model performed less well than
the attention model in the direct mapping task, while they gave
similar performances when used as standard ASR models. We
see that the attention model works more flexibly with omitted
and additional tokens than the CTC.

B. Cascaded ASR and text-based SST vs. direct model

We also implemented and evaluated an attention-based
modular method as a reasonable alternative of the conventional
approach, which cascades ASR and text-based SST. In this
method, we performed ASR and SST using two separate
seq2seq models. The text-based SST was trained using the
LSV transcripts as input and the clean text as target. In the
runtime, this SST takes the output of the ASR model as input.

We found two interesting phenomena with the result of this
cascade approach. On one hand, it gave a much fewer insertion
errors than the baseline ASR followed by filler removal (7.4%
vs. 5.2%). This suggests that the text-based SST implemented
with a seq2seq model can perform more various types of
corrections than simply removing filler words. On the other
hand, it was significantly worse than the proposed direct model
in terms of all types of error rates. This confirms that the direct
approach is much more effective than cascading isolated ASR
and SST modules.

The MTL method further improved the performance of the
direct model by 0.5 points. This shows that we can mitigate
the difficulty of the direct mapping task by incorporating
an easier auxiliary task. Furthermore, the forward-backward
decoding gave an additional large improvement of 1.1 points,
which clearly demonstrates the importance of right contexts
in correcting texts. These improvements with the MTL and
bidirectional decoding are statistically significant at the 1%
level. The best direct model yielded even a higher character
correctness (complement of the sum of deletion and insertion
errors) than the state-of-the-art hybrid DNN-HMM equipped
with a large LM and lexicon with 67K word entries (93.5%
vs. 92.7%) with a decoding speed faster by a factor of 50.

It is important to emphasize that the aim of this section is
not to make a fair comparison between the direct and cascade
approaches3, but to demonstrate that accurate generation of
clean texts is possible for real parliamentary meetings based
on our method without requiring faithful transcripts at all.

C. Punctuation insertion

We cannot tell apart ASR errors and correction errors from
the results in TABLE I. Here, we compare the pure correction
performance of the cascade and direct models by showing their
F-measure for punctuation insertion in TABLE II. While the
cascade model gave a reasonable F-measure for comma and
period insertion, the direct model gave much better results. By

3Ideally, the SST model should be trained using the faithful transcripts for
all training data as input, but it is unrealistically expensive. The attention-
based model cannot be reliably trained with the small corpus mentioned in
Section 3.3.
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やはり担い手の意見が反映させることが必要不可欠であるということで、この義務づけをいたしました。一方で、年齢や性別については、成年層や、

女性の方、これは生産販売で大きなこれを果たしておりますので、

やはりこの担い手の意見が反映させることはされることが必要不可欠であるということでえー この義務づけをいたしましたであのー一方でですね あのー

年齢や性別についてはえーこの おー成年層やですね女性の方 生産販売で大きなこれ果たしておりますので

やはり担い手の意見が反映されることが必要不可欠であるということで、義務づけをいたしました。一方で、年齢や性別については、青年層や女性の方、

これは生産販売で大きな役割を果たしておりますので、

担い手の意見が反映されることが必要不可欠であるということで、この義務づけをいたしました。一方で、年齢や性別については、青年層や女性の方、
これは生産や販売で大きな役割を果たしておりますので、

この

や

や

reparandum
baseline ASR

direct

written records

∨

∨

∨
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∨
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。

や
cascade

∨

れる

青年 役割

役割

青年

Fig. 3. An example of the system output and the corresponding clean text. Characters which should be deleted, inserted and substituted in the written records
appear in the red, blue and orange fonts, respectively. Those in the green font are recognition errors.

TABLE II
F-MEASURE FOR PUNCTUATION INSERTION (%)

model comma period

attn. ASR + attn. SST (cascade) 0.711 0.750

attn. direct 0.732 0.827
+ MTL 0.740 0.829
+ forward-backward decoding 0.753 0.834

using the MTL and bidirectional decoding, the performance
is further improved, following a parallel trend to the results
in Table I. Since a quantitative analysis on other types of
corrections requires additional annotations, it is left for future
work.

Fig.3 compares the output of the baseline ASR, the cascade
model, and the direct model enhanced by the MTL and
bidirectional decoding, along with the corresponding ground-
truth text from the official written records for an example
utterance. We can see that the direct model significantly
reduced the number of edits required to modify the system
output into the reference. We also note that in the output of the
cascade approach, two recognition errors made by the baseline
ASR remain uncorrected, while the direct model is free from
these recognition errors. It is also notable that the direct model
successfully removed only the reparandum part of the repair.
Overall, we observe the proposed direct model does not only
perform appropriate corrections, but also reduce recognition
errors. This may be due to two reasons: the clean text target
does not include recognition errors unlike the conventional
LSV, and it is much more linguistically constrained and has
lower perplexity than faithful transcripts.

V. CONCLUSION

We here proposed an e2e approach for directly mapping
speech to a clean text and evaluated on a large corpus of
Parliamentary speech. We showed the attention-based model
is flexible enough to perform this complicated task with a
low error rate. We also demonstrated the effectiveness of
an MTL method leveraging the standard ASR subtask and
forward-backward decoding. From these encouraging results,
we confirmed that our method can drastically reduce the cost

and time in making written records of Parliamentary meetings.
The clean text output is also useful for downstream processing
such as machine translation [31].

REFERENCES

[1] D.Jones, F.Wolf, E.Gibson, E.Williams, E.Fedorenko, D.Reynolds, and
M.Zissman, “Measuring the readability of automatic speech-to-text
transcripts,” in Eurospeech, 2003, pp. 1585–1588.

[2] Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M. Ostendorf, , and
M. Harper, “Enriching speech recognition with automatic de- tection
of sentence boundaries and disfluencies,” IEEE Trans. Audio, Speech &
Language Process., vol. 14, pp. 1526–1540, 2006.

[3] J. Yeh and C. Wu, “Edit disfluency detection and correc- tion using a
cleanup language model and an alignment model,” IEEE Trans. Audio,
Speech & Language Process., vol. 14, pp. 1574–1583, 2006.

[4] M. Paulik, S. Rao, I. Lane, S. Vogel, and T. Schultz, “Sentence
segmentation and punctuation recovery for spoken language translation,”
in Proc. ICASSP, 2008.

[5] A. Gravano, M. Jansche, and M. Bacchiani, “Restoring punctuation and
capitalization in transcribed speech,” in Proc. ICASSP, 2009, pp. 4741–
4744.

[6] Y. Akita and T. Kawahara, “Automatic comma insertion of lecture
transcripts based on multiple annotations,” in INTERSPEECH, 2011,
pp. 2889–2892.

[7] T. Hori, D. Willett, and Y. Minami, “Paraphrasing spontaneous speech
using weighted finite-state transducers,” in ISCA & IEEE Workshop on
Spontaneous Speech Processing and Recognition, 2013.

[8] K. Shitaoka, H. Nanjo, and T. Kawahara, “Automatic transformation of
lecture transcription into document style using statistical framework,” in
INTERSPEECH, 2004, pp. 2169–2172.

[9] G.Neubig, Y.Akita, S.Mori, and T.Kawahara, “A monotonic statistical
machine translation approach to speaking style transformation,” in
Computer Speech and Language, vol. 26, 2012, pp. 349–370.

[10] R. Sproat and N. Jaitly, “An rnn model of text normalization,” in
INTERSPEECH, 2017, pp. 754–757.

[11] T.Kawahara, “Automatic meeting transcription system for the Japanese
Parliament (Diet),” in APSIPA, 2017.

[12] M. Y.Akita and T.Kawahara, “Automatic transcription system for meet-
ings of the japanese national congress,” in INTERSPEECH, 2009, pp.
84–87.

[13] A. Lee, T. Kawahara, and K. Shikano, “Julius : an open source real-
time large vocabulary recognition engine,” in EUROSPEECH, pp. 1691–
1694,.

[14] G.E.Hinton, L.Deng, D.Yu, G.Dahl, A.Mohamed, N.Jaitly, A.Senior,
V.Vanhoucke, P.Nguyen, T.Sainath, and B.Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition,” IEEE Signal
Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[15] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification : Labelling unsegmented sequence data with
recurrent neural networks,” in Proc. of the 23st International Conference
on Machine Learning, 2006, pp. 369–376.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

469



[16] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate
recurrent neural network acoustic models for speech recognition,” in
arXiv preprint arXiv:1607.06947, 2015.

[17] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Advances in Neural
Information Processing Systems (NIPS), 2015, pp. 577–585.

[18] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,”
in ICASSP, 2016, pp. 4960–4964.

[19] K. Audhkhasi, B. Ramabhadran, G. Saon, M. Picheny, and D. Nahamoo,
“Direct acoustics-to-word models for English conversational speech
recognition,” in Interspeech, 2017, pp. 959–963.

[20] H. Soltau, H. Liao, and H. Sak, “Neural speech recognizer: Acoustic-
to-word LSTM model for large vocabulary speech recognition,” in
Interspeech, 2017, pp. 3707–3711.

[21] S. Ueno, H. Inaguma, M. Mimura, and T. Kawahara, “Acoustic-to-word
attention-based model complemented with character-level CTC-based
model,” in ICASSP, 2018.

[22] L.Lamel, J.Gauvain, and G.Adda, “Investigating lightly supervised
acoustic model training,” in ICASSP, vol. 1, 2001, pp. 477–480.

[23] T.Kawahara, M.Mimura, and Y.Akita, “Language model transformation
applied to lightly supervised training of acoustic model for congress
meetings, booktitle =.”

[24] Ron.J.Weiss, J. Chorowski, N. Jaitly, Y. Wu, and Z. Chen, “Sequence-
to-sequence models can directly translate foreign speech,” in INTER-
SPEECH, 2017, pp. 2625–2629.

[25] Y.Akita and T.Kawahara, “Topic-independent speaking-style transforma-
tion of language model for spontaneous speech recognition,” in ICASSP,
vol. 4, 2007, pp. 33–36.

[26] T. H. Suyoun Kim and S. Watanabe, “Joint ctc- attention based end-to-
end speech recognition using multi-task learning,” in ICASSP, 2017, pp.
4835–4839.

[27] M. Mimura, S. Sakai, and T. Kawahara, “Forward-backward attention
decoder,” in INTERSPEECH, 2018, pp. 2232–2236.

[28] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[29] S.Hochreiter and J.Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[31] S. Rao, I. Lane, and T. Schultz, “Improving spoken language translation
by automatic disfluency removal: evidence from conversational speech
transcripts,” in Machine Translation Summit XI, 2007, pp. 177–180.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

470


