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Abstract
Knowledge about phonemes and their articulatory attributes
can help improve automatic speech recognition (ASR) of low-
resource languages. In this study, we propose a simple and
effective approach to embed prior knowledge about phonemes
into end-to-end ASR based on a large pre-trained model. An ar-
ticulatory attribute prediction layer is constructed by embedding
articulatory constraints in layer initialization, which allows for
predicting articulatory attributes without the need for explicit
training. The final ASR transcript is inferred by combining the
output of this layer with encoded speech features. We apply
our method to finetune a pre-trained XLS-R model using Ainu
and Mboshi corpora, and achieve a 12% relative improvement
when target data of only 1 hour is available. This demonstrates
that the approach of incorporating phonetic prior knowledge is
useful when combined with a large pre-trained model.
Index Terms: Low-resource speech recognition, articulatory
attributes, wav2vec2.0

1. Introduction
Over the last decade, deep neural network (DNN) based ap-
proaches have significantly improved the performance of auto-
matic speech recognition (ASR) and have made the end-to-end
approach possible [1] [2] [3], where output prediction is directly
inferred from acoustic features through a single neural network,
without the need of manual pronunciation modeling. However,
this has been possible with large language corpora, and only
a handful of languages have sufficient language resources to
achieve high performance for ASR, among approximately 7,000
languages [4] in the world. In particular, the number of nodes
in the output layer in end-to-end models may be too large for
low-resource languages, and this can be partially mitigated by
encoding the relationships between output tokens.

Articulatory attributes are a set of distinct features that de-
scribe how speech sounds are produced by the articulators in
the mouth, such as the lips, tongue, and vocal cords. It is
shown that articulatory attributes can be recognized across dif-
ferent languages [5]. The approach incorporating articulatory
attributes to ASR systems has been investigated for traditional
GMM-HMM based models, and shown to contribute to mak-
ing models more robust to speaker or channel variability [6].
In Automatic Speech Attribute Transcription (ASAT) [7] [8],
a bank of speech attribute detectors were placed in the lowest
level of ASR pipeline hierarchy, where detected attributes were
combined to predict phones, syllables and words. Articulatory
modeling has also been applied to DNN-HMM and end-to-end
models in multilingual settings, improving robustness to spon-
taneous and non-native speech [9], and benefiting performance
in low-resource scenarios [10] [11] [12].

In recent years, a prominent trend in low-resource speech
recognition research has been to use self- or semi-supervised
pre-training on high-resource speech corpora to learn a uni-
versal speech representation, which can then be finetuned for
downstream tasks [3]. Large pre-trained multilingual models
such as wav2vec2.0 and XLS-R [13] are shown to learn gen-
eral representation that is applicable even to unseen languages,
and have greatly benefited low-resource ASR performance, as
shown in [14]. It is known that these models learn high-level
representations corresponding to phonemes without any explicit
supervision [3], and it is possible that part of the learned repre-
sentation corresponds to articulatory attributes as well. There-
fore, the approach of incorporating articulatory information is
expected to be effective when used in combination with a large-
scale pre-trained model for developing an ASR system with
very low-resource settings.

In this study, we propose a simple method to incorporate ar-
ticulatory information by embedding it into layer initialization
in end-to-end ASR. First, we construct a fixed-length encoding
vector for each phoneme, using knowledge about articulatory
attributes. Then, these attribute vectors are stacked to form an
articulatory attribute projection matrix, which projects articu-
latory attribute prediction into output phoneme prediction. This
articulatory attribute prediction layer is combined with another
conventional projection layer to generate final outputs. We fine-
tune a pre-trained XLS-R model with this output layer placed
on top. We also explore multilingual training that exploits high-
resource language to enhance the representation ability of the
model for articulatory attributes. The proposed method is ap-
plied to two low-resource languages of Ainu and Mboshi, with
the target training data of around 34 and 4 hours, respectively.

2. Related Work
2.1. Articulatory Modeling

Müller et al. [11] attempted to improve low-resource ASR by
using articulatory attributes along with language feature vec-
tors and acoustic features. They introduced seven articulatory
attribute classifiers and one special phoneme type classifier for
each of the 8 categories they defined, such as phoneme type,
manner and place of articulation, and vowel frontness. Each
category has a predefined number of classes, including a special
class representing not applicable; for example, frontness cate-
gory has 4 classes: front, central, back, not applicable. This
modeling is rather restrictive because each phoneme can only
have one attribute class for each category, making it difficult to
apply to multilingual settings with languages requiring different
articulatory modeling. Moreover, it was not implemented in an
end-to-end ASR model.

Li et al. [12] introduced articulatory modeling to end-to-
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Figure 1: An overview of the proposed model architecture. Each language has a respective output layer, while the articulatory attribute
prediction layer is shared across languages. L stands for the number of languages. Al stands for the articulatory attribute projection
matrix for language l and its elements are set as trainable parameters and is implemented simply as a linear projection layer.

end speech recognition. They mapped each character token to a
sequence of tokens representing articulatory attributes. For ex-
ample, the character representing /g/ is mapped to the sequence
of two tokens ⟨voiced⟩ ⟨velar⟩. They trained a Transformer-
based model to predict articulatory attribute token sequences
from speech features in an end-to-end fashion. They observed
that while this method underperforms under monolingual set-
tings, it can significantly outperform usual end-to-end models in
multilingual settings, where the model can effectively learn ar-
ticulatory representations shared across target languages. This
suggests the importance of multilingual training when using ar-
ticulatory features for speech recognition.

In this study, we incorporate articulatory attribute predictors
and combine their outputs with acoustic features to form the
final token prediction. Unlike [11], we treat each articulatory
attribute independently, allowing phonemes to be modeled to
have multiple attributes at the same time, e.g. affricates can be
modeled by both being plosive and fricative. Moreover, we do
not train such predictors in a supervised manner; instead, they
are induced to make articulatory attribute predictions, by layer
initialization. Then, the entire network is finetuned in an end-to-
end manner. The modeling is more flexible to model attributes
with a continuous scale, e.g. vowel height, and it can work with
imperfect knowledge about the phonemes of the target language
and inaccurate articulations in input speech.

2.2. Wav2vec2.0

Wav2vec 2.0 is a self-supervised learning framework that learns
latent representation from raw speech data. In this framework,
the speech input is first encoded by a multi-layer convolutional
neural network (CNN). This latent representation is masked and
input to a Transformer encoder network, producing contextual-
ized representations. The model is trained through predicting
true latent representation from other contextualized represen-
tations, in a similar fashion to masked language models such
as BERT [15]. Vector quantized codes are used as a similarity
measure. Wav2vec 2.0 models can be trained on large multilin-
gual corpora [13] and can then be used as a pre-trained model
for finetuning on a small amount of labeled data. It has been
shown to outperform previous approaches especially in terms

of low-resource ASR [14].

3. Proposed Method
3.1. Articulatory Modeling for Phonemes

First, we identify all relevant articulatory attributes for the tar-
get language, which are categorized into three groups: vowel
attributes, place and manner of articulation for consonants. Ad-
ditionally, there is a special category of attributes that applies
to all output tokens. Table 1 lists all of the attributes covered
in this study, for Ainu and Mboshi. Since different languages
have different contrasting features, the set of articulatory at-
tributes should be modified to encompass all contrasting fea-
tures present in other target languages.

Vowel attributes (e.g. vowel height, backness, etc) tend to
be best represented in a continuous scale, while consonant at-
tributes (i.e. place or manner of articulation) tend to be best

Table 1: Articulatory attributes.

Category Attributes
1 0 -1

Special sound - symbol
consonant semi-vowel vowel
voiced - voiceless

Vowel
back central front
open mid closed
high-toned - low-toned

Consonant
(place)

bilabial - else
labiodental - else
alveolar - else
palatal - else
velar - else
glottal - else

Consonant
(manner)

nasal - else
plosive - else
fricative - else
flap - else
approximant - else
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Table 2: Examples of assignment of articulatory attribute encoding. Encodings that deserve special attention are rendered bold.

sound /
symbol

consonant /
vowel

back /
front

open /
closed voiced plosive fricative bilabial alveolar palatal

⟨wb⟩ -1 0 0 0 0 0 0 0 0 0

Ainu
a 1 -1 0 1 1 0 0 0 0 0
u 1 -1 1 -1 1 0 0 0 0 0
c 1 1 0 0 0 1 1 -1 1 0

Japanese f 1 1 0 0 -1 -1 1 1 -1 -1
by 1 1 0 0 1 1 -1 1 -1 1

represented in a one-hot encoding scheme. In our method, we
represent every attribute in a continuous scale ranging from -1
to 1, e.g. front (-1) to back (1). In the case of consonant at-
tributes, a value of -1 denotes the attribute’s absence, analogous
to 0 in one-hot encoding. The interpretation of a value of 0 de-
pends on the attribute and the token. For vowel attributes of
vowel tokens, a value of 0 denotes the middle point on the -1 to
1 scale. For other instances, a value of 0 indicates that the at-
tribute is not applicable, such as consonant attributes for vowel
tokens.

We flexibly utilize this encoding scheme to embed phonetic
and phonological knowledge, as it will only be used in layer
initialization and not for training labels, and deep learning will
finetune any incomplete, ambiguous or incorrect details. For
example, the phoneme /c/ in Ainu is an affricate and is encoded
by setting both plosive and fricative attributes to 1. The palatal
attribute is set to 0, as it is sometimes realized as palato-alveolar
[Ù], though usually realized as alveolar affricate [ts]. Moreover,
the voiced attribute is set to 0, encoding the fact that there is
no phonemic contrast between voiced and voiceless consonants
in Ainu. Table 2 shows examples of assignment of articulatory
attributes for Ainu and Japanese phoneme tokens.

By representing each token as a fixed-length encoding vec-
tor, we can construct an articulatory attribute projection matrix
Al ∈ RV ×N for a target language l, where V represents the
size of vocabulary and N represents the number of articula-
tory attributes. Each row in Al is normalized to have a unit
variance and zero mean. This matrix can be regarded of as a
mapping from [-1,1]-normalized attribute predictions to token
predictions.

For languages with a restricted syllabic structure such as
Ainu, it is straightforward to extend this encoding to syllabic
tokens. Syllables in Ainu have (C)V(C) structure, having 3
phonemes at most. Thus, each syllable token in Ainu can be
represented by a 3N -dimensional encoding vector, and an at-
tribute projection matrix can be constructed accordingly.

3.2. Articulatory Attribute Prediction Layer

As shown in the right-most part of Figure 1, the articulatory at-
tribute prediction layer is placed to project input features to the
attribute space using the tanh activation function, as we rep-
resent each attribute in a [-1,1] scale. This layer is followed
by another projection layer from attribute space to output to-
kens, which is initialized by the attribute projection matrix Al

defined earlier. The outputs are then fed into softmax, yielding
the token predictions. The attribute prediction layer is trained
as a predictor for articulatory attributes without explicit super-
vision. However, we observed that using only the outputs from
this layer as final token predictions leads to suboptimal perfor-
mance. To address this, we combined it with conventional pro-
jection from input speech features to make the final predictions,

as illustrated in Figure 1.

4. Experimental Setup
4.1. Datasets

4.1.1. Speech Corpus of Ainu Folklore

Ainu is a language spoken by the Ainu, a minority ethnic group
in the northern part of Japan, and is classified critically endan-
gered by UNESCO. The speech corpus of Ainu folklore [16] is a
collection of speech recordings of Ainu stories, myths, and leg-
ends that have been collected to preserve the Ainu language and
culture. It consists of utterances from 8 Ainu speakers speaking
the Saru dialect, amounting to 38.9 hours. We split it into train
set of 33.7 hours and dev set of 5.2 hours. Subsets of the train
set with varying amounts of data are used for training, to inves-
tigate the effect of the amount of training data for our method.
Furthermore, additional utterances of 14 hours spoken by an-
other Ainu speaker with a distinct dialect, Shizunai dialect, is
employed as the test set. The characters used in the transcrip-
tion correspond 1-to-1 to phonemes.

In addition, we conduct experiments in bilingual settings
where we adopt Japanese as an auxiliary language because
Japanese and Ainu share most of the phonemes, and most Ainu
speakers also speak Japanese. We use utterances of about 300
hours from the Corpus of Spontaneous Japanese (CSJ) [17] as
an additional training corpus.

Both Ainu and Japanese have a restricted syllabic structure
of (C)V(C), and thus it is straightforward to employ articulatory
modeling for syllables in both languages. We use syllable as
the target unit and employ syllabic articulatory modeling, as
described in section 3.1.

4.1.2. Mboshi Parallel Corpus

Mboshi (Bantu C25, Congo-Brazzaville) is a Bantu language
spoken by the Mboshi people in the Republic of Congo. The
Mboshi parallel corpus [18] contains speech utterances of
around 4.5 hours from 3 speakers. The data is split into train set
of 3.9 hours and dev set of 26.4 minutes. We adopt the train/dev
split as defined in the original paper [18].

The characters used in the transcription of this corpus do not
correspond to phonemes in a 1-to-1 fashion. For example, the
character h only appears in combination of either /gh/ or /bh/,
which correspond to the voiced bilabial fricative and voiced ve-
lar fricative, respectively. To handle such cases, we leverage the
flexibility of our articulatory modeling and assign a value of 1
to both the bilabial and velar attributes for h.

4.2. Model Training and Evaluation Measure

We used a publicly available pretrained multilingual model for
all our experiments, namely XLS-R (0.3B) [13]. It is a 317M
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Table 3: CER(%) with varying amounts of Ainu training sets and Mboshi. The final row shows the relative improvement of the best
performing proposed model from the baseline model.

Target language (unit) Ainu (syll) Mboshi (char)
Training data 10m 1h 4h 10h all (33.7h) all (3.9h)
baseline 35.1 19.6 16.5 15.5 14.1 6.10
proposed (attribute prediction only) 26.0 18.0 15.8 15.2 14.1 7.28
proposed (hybrid) 24.8 17.6 15.5 14.8 13.4 5.76
proposed (hybrid + bilingual training) 23.8 17.2 15.6 14.5 14.1 -
relative improvement (%) 32.1 12.2 6.1 6.1 4.8 5.6

parameter model with 24 Transformer encoder layers, with em-
bedding size of 1024 and 16 attention heads. It is trained on
various speech corpora such as VoxPopuli, MLS, and Common-
Voice, totaling 436K hours comprised of 128 different lan-
guages. We conduct finetuning experiments with CTC loss,
where we freeze the convolution based feature extractor and
finetune all of the transformer encoder layers, along with the
output layers.

Models are trained using the Adam optimizer [19]. Learn-
ing rate is linearly warmed up for the first 10% training steps
and peaks at 5e-3 for Ainu and 6e-3 for Mboshi, holds for 40%
of the training steps, then gets exponentially decayed. The batch
size is 45s and we mix target and auxiliary languages in 1:1 ra-
tio in bilingual settings. We employ different numbers of train-
ing steps depending on the amount of target training data: 16K,
20K, 30K, 40K, 50K steps for training data of 10m, 1h, 4h, 10h,
33.7h, respectively. For bilingual training, we use 60% more
training steps.

Three different configurations of the proposed method are
trained and evaluated, and compared to the baseline configura-
tion where the output layer simply consists of one linear pro-
jection layer 1. In attribute prediction only configuration, only
output from the articulatory attribute prediction layer is used for
the final prediction. It is combined with input speech features in
hybrid configuration, as illustrated in the right-hand side of Fig-
ure 1. In hybrid + bilingual training configuration for Ainu, the
model is trained in a bilingual setting with additional training
data in Japanese.

Character error rate (CER) is employed as the evaluation
metric, given the difficulty in computing word error rate (WER)
for very low-resource languages where determining word units
is not obvious. For Ainu, the model with the lowest CER against
dev set is selected and evaluated against the test set. For Mboshi,
we simply evaluated the model at the end of the training against
the dev set.

5. Experimental Results
The comparison of Character Error Rate (CER) of the baseline
and proposed models in various training settings is presented
in Table 3. We observe a significant improvement in perfor-
mance in all hybrid models, especially when the available train-
ing data is smaller. The attribute prediction only models per-
form consistently worse than hybrid models, sometimes even
worse than the baseline model. It is likely because the articu-
latory constraints can be too strict for the model to learn accu-
rate representation of output tokens. The use of bilingual data
improves performance by a small margin, although not signif-
icantly, when the training data is less than 10 hours. However,
bilingual training with the entire 33.7h Ainu training data re-

1The difference in model size between baseline and proposed con-
figurations is marginal, as the pretrained XLS-R model already has
317M parameters.

Table 4: CER(%) results with different inputs for articulatory
attribute prediction layer

Transformer Encoder # Ainu (4h)
24 15.5
16 16.0
8 16.2

CNN features 16.5

sults in a decline in performance. This may be because we
are modeling articulatory attributes of different languages in the
same way, even though they are physically realized in a slightly
different way.

Our method benefited performance for Mboshi as well as
Ainu, where we observe 5.6% relative improvement. The ab-
solute CERs for Mboshi are much lower than that of Ainu, and
it is likely due to the fact that the speakers and dialects used in
training and evaluation are the same, whereas the Ainu test set
consists of a different speaker with a distinct dialect. The results
demonstrate that out method can be applied and improve perfor-
mance across different languages and different target units.

5.1. Effect of Inputs to the Attribute Prediction Layer

We conducted an additional series of experiments where we
change the source of input to the articulatory attribute predic-
tion layer. We tested latent representations from the final (24th),
16th and 8th Transformer encoder layer, as well as directly from
the CNN feature extractor. Note that the final output of the
Transformer encoder is still combined to produce the final out-
put; with only input to the attribute prediction layer changed.
The results are presented in Table 4. Notably, the results show a
consistent trend in performance improvement with higher rep-
resentation inputs. This finding suggests that articulatory at-
tributes are high-level features that benefit from contextualized
high-level representations.

6. Conclusions
We have presented a method for improving ASR in low-
resource settings by incorporating linguistic prior knowledge
about phonemes. It is simple yet flexible for modeling con-
tinuous and ambiguous articulatory constraints. It does not re-
quire explicit supervision on articulatory attribute labels and can
model phonemes from multilingual inventories. We conducted
finetuning experiments with XLS-R models on two very low-
resource languages, Ainu and Mboshi. The results show that
our method can improve CER by relative 12% when the amount
of training data is limited to 1 hour, and still produce a meaning-
ful improvement when using 33.7 hours of training data. This
study demonstrates the importance of incorporating linguistic
prior knowledge about target language, even when state-of-the-
art pre-trained models are employed.
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