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Abstract
We propose multi-modal speaker diarization using acoustic and
eye-gaze information in poster conversations. Eye-gaze infor-
mation plays an important role in turn-taking, thus it is useful
for predicting speech activity. In this paper, a variety of eye-
gaze features are elaborated and combined with the acoustic
information by the multi-modal integration model. Moreover,
we introduce another model to detect backchannels, which in-
volve different eye-gaze behaviors. This enhances the diariza-
tion result by filtering meaningful utterances such as questions
and comments. Experimental evaluations in real poster sessions
demonstrate that eye-gaze information contributes to improve-
ment of diarization accuracy under noisy environments, and its
weight is automatically determined according to the Signal-to-
Noise Ratio (SNR).
Index Terms: speaker diarization, backchannel, multi-modal,
eye-gaze, poster conversation

1. Introduction
Recent advances in sensing technologies allow us to conduct
multi-modal analyses and processing of multi-party conversa-
tions. In the AMI / AMIDA [1] and VACE [2] projects, multi-
party conversations such as meetings were recorded using mul-
tiple microphones and cameras. Analyses involved the multi-
modal data including not only verbal information but also non-
verbal channels, such as backchannels, nodding, and eye-gaze
behaviors [3, 4].

We have been collecting multi-modal data on conversations
in poster sessions (= poster conversations), where a presenter
makes an interactive presentation to a small audience. This
conversation form is commonly conducted in academic con-
ventions including InterSpeech conferences. To analyze poster
conversations, a recording environment, called “smart poster-
board”, equipped with multi-modal sensing devices such as a
microphone array and cameras has been developed [5]. Based
on the collected multi-modal data, we have investigated turn-
taking behaviors [6] and interest / comprehension levels of the
audience [7].

This study addresses speaker diarization in poster conver-
sations. Speaker diarization is to identify “who spoke when”
in multi-party conversations. A number of diarization meth-
ods [8, 9, 10] have been investigated based on acoustic infor-
mation. In real multi-party conversations, the diarization per-
formance is degraded by adversary acoustic conditions, such
as background noise [8] and distant talking [11]. To solve the
problem, some studies tried to incorporate multi-modal infor-
mation such as motion and gesture [12, 10, 13].

We propose a multi-modal diarization method which in-
tegrates eye-gaze information with acoustic information. The
eye-gaze behavior plays an important role in turn-taking in
multi-party conversations [14, 15]. For example, it is often ob-
served that eye-gaze directions of participants tend to intersect
each other when they change the conversational turn. Although
it is known that eye-gaze information can be used to predict
participants’ utterances [16, 6, 17], eye-gaze information has
not been integrated in speaker diarization tasks. In our previous
work [18], we proposed a multi-modal scheme which integrates
eye-gaze information with acoustic information, and conducted
preliminary experiments. The proposed method extracts acous-
tic and eye-gaze features, which are integrated in a stochastic
manner. In this paper, we conduct additional data collection,
and make substantial improvements in the eye-gaze features and
the multi-modal integration model. Furthermore, the diarization
results are enhanced by detecting audience’s backchannels to
efficiently review the conversational content in poster sessions.
Detection of backchannels is also realized by using the same
multi-modal scheme. Backchannels are frequently observed in
poster conversations and involve different eye-gaze behaviors
since they indicate that the listener does not take a turn. Thus,
a different model is trained for their detection. By eliminating
the detected backchannels and noise from the diarization result,
we can easily access to meaningful utterances such as questions
and comments, while backchannels show the interaction level
of the conversation.

2. Multi-modal corpus of poster
conversations

The smart posterboard system consists of a 19-channel micro-
phone array, Kinect sensors, and HD cameras, which are at-
tached to a large LCD (Figure 1). With this setting, eight poster
sessions were recorded. In each session, one presenter made
a poster presentation on his/her academic research, and there
was an audience of two persons, standing in front of the poster
and listening to the presentation. The duration of each session
was 20 to 30 minutes. Speaker diarization and detection of
backchannels are conducted with the sensors (the microphone
array and Kinect) attached to the posterboard, so the partici-
pants do not have to wear any devices. For the ground truth
annotation of the data used in this work, however, speech data
were also recorded with a wireless headset microphone, and
participants’ head locations and orientations were captured by
magnetometric sensors.

Table 1 summarizes the total utterance duration in the
recorded sessions. While the presenter (pre) holds a majority
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Figure 1: Outlook of smart posterboard

Table 1: Total utterance duration [sec.] (backchannels)
session ID pre aud1 aud2 total
140206-01 1,251 19 ( 11) 227 (111) 1,497
140206-02 1,406 283 (138) 164 ( 15) 1,853
140206-03 1,333 328 (160) 170 ( 86) 1,831
140206-04 1,495 129 ( 57) 102 ( 35) 1,726
140207-01 1,343 164 ( 48) 123 ( 21) 1,630
140207-02 1,229 134 ( 52) 117 ( 26) 1,480
140207-03 1,205 106 ( 41) 267 ( 79) 1,578
140207-04 1,208 216 (113) 135 ( 81) 1,559

total 10,470 2,684 (1,074) 13,154

of the turns, utterances by the audience (aud1 and aud2) are not
frequent, which means it would be difficult to detect these ut-
terances accurately. The audience’s backchannels account for
about 40 percent of their utterance duration.

3. Multi-modal speaker diarization
This section describes the proposed speaker diarization method
which integrates acoustic and eye-gaze information.

3.1. Baseline acoustic method

Conventional speaker diarization methods have used Mel-
Frequency Cepstral Coefficients (MFCCs) [8, 10] and Direc-
tions Of Arrival (DOA) of sound sources [19, 20, 21, 22] as
acoustic features. An acoustic baseline method in this study is
based on sound source localization using DOAs derived from
the microphone array.

To estimate a DOA, we adopt the MUltiple SIgnal Classi-
fication (MUSIC) method [23, 24], which can detect multiple
DOAs simultaneously. The MUSIC spectrum Mt(θ) is calcu-
lated based on the orthogonal property between an input acous-
tic signal and a noise subspace. Note that θ is an angle between
the microphone array and the target, and t represents a time
frame. The MUSIC spectrum represents DOA likelihoods, and
the large spectrum suggests that the participant makes an utter-
ance from that angle. To calculate the spectrum, it is needed
to determine the number of sound sources. In this study, the
number of sound sources is predicted with an SVM using the
eigenvalue distribution of a spatial correlation matrix [25].

3.2. Multi-modal method integrating eye-gaze information

The proposed method incorporates eye-gaze information to
speaker diarization. The method first extracts acoustic and eye-
gaze features to compute a probability of speech activity respec-
tively, then combines the two probabilities for the frame-wise
decision. The process is conducted independently on every time
frame t and for each participant i.

3.2.1. Acoustic features

The acoustic features are calculated based on the MUSIC spec-
trum. We can use the i-th participant’s head location θi,t tracked
by the Kinect sensors. The possible location of the participant
is constrained within a certain range (±θB) from the detected
location θi,t. The acoustic features of the i-th participant in the
time frame t consist of the MUSIC spectrum in the range:

ai,t = [Mt (θi,t − θB) , ···,Mt (θi,t) , ···,Mt (θi,t + θB)]
T

.

3.2.2. Eye-gaze features

The eye-gaze direction used in this study is approximated by
the head orientation estimated from RGB and depth images cap-
tured by the Kinect sensors. The head orientations are tracked
by a particle filter [26]. The eye-gaze object is determined by
the head-orientation vector and the location of the objects. In
this work, the object is limited to the poster and the other par-
ticipants.

The eye-gaze features are designed based on the eye-gaze
objects of the i-th participant and a conversational partner1. The
eye-gaze feature vector gi,t consists of the followings:

1. Eye-gaze object
This feature represents which object the i-th participant
looks at. For the presenter, (P) poster or (I) audience;
For (anybody in) the audience, (p) poster or (i) presenter.

2. Joint eye-gaze event: “Ii”, “Ip”, “Pi”, “Pp”
This feature represents combination of the eye-gaze ob-
jects by the i-th participant and the conversational part-
ner. For example, “Ii” and “Pp” correspond to mutual
gaze and joint attention, respectively.

3. Maximum duration of each state of the above 1.

4. Maximum duration of each state of the above 2.

5. Uni-gram and Bi-gram of the above 1.
This feature represents the transition of the eye-gaze ob-
jects.

6. Uni-gram and Bi-gram of the conversational partner’s
eye-gaze objects

The first and the second features are calculated for the time
frame t, and the others are measured within the preceding pe-
riod (the preceding C ms).

3.2.3. Multi-modal integration model

We integrate the acoustic features ai,t with the eye-gaze fea-
tures gi,t to detect the i-th participant’s speech activity vi,t in
the time frame t. The speech activity vi,t is binary: speaking
(vi,t = 1) or not-speaking (vi,t = 0). We adopt a linear in-
terpolation of the probabilities independently computed by the
two feature sets2 [10]:

fi,t(ai,t,gi,t) = α p(vi,t = 1|ai,t)

+ (1− α) p(vi,t = 1|gi,t) . (1)

Here, α ∈ [0, 1] is a weight coefficient. Each probability is
computed by a logistic regression model. It is also possible

1The conversational partner of the presenter is the audience, and the
conversational partner of the audience is the presenter.

2In the previous work [18], we used a generative model to compute
p(ai,t|vi,t), but it is difficult to estimate the weight coefficient α be-
cause of a large difference of the dynamic ranges.
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to combine the two feature sets in the feature domain and di-
rectly compute a posterior probability p(vi,t|ai,t,gi,t). Com-
pared with this joint model, the linear interpolation model has
a merit that training data does not need to be aligned between
the acoustic and eye-gaze features because of independency of
the two discriminative models. Furthermore, the weight coeffi-
cient α can be appropriately determined based on the acoustic
environments such as Signal-to-Noise Ratio (SNR). Here, it is
estimated using an entropy h of the acoustic posterior probabil-
ity p(vi,t|ai,t) [27, 28] as

α = αc ·
1− h

1− hc ,
(2)

where hc and αc are an entropy and an ideal weight coefficient
in a clean acoustic environment, respectively. When the esti-
mated weight coefficient is larger than one or less than zero, the
coefficient is set to one or zero, respectively. For online pro-
cessing, the coefficient is updated every 15 seconds by using
the preceding 15-second data.

4. Detection of backchannels
The diarization result includes backchannels and also falsely ac-
cepted noise especially for audience’s utterances. We introduce
a post-processing model to detect and eliminate them and high-
light questions and comments by the audience, which are im-
portant for efficient review of poster conversations.

There have been few works on detection of backchannels,
for example, MFCCs and Gaussian Mixture Model (GMM) are
used to classify backchannels and other acoustic events [29].
On the other hand, many studies have been conducted to predict
appropriate timing of backchannels [30, 31, 32, 33, 34].

Backchannels suggest that the current speaker can hold the
turn, and the listener does not take a turn. In that sense, the eye-
gaze behaviors are different from those of turn-taking. Thus,
we train a different model using the eye-gaze behaviors to pre-
dict backchannels. Here, we adapt the multi-modal scheme for-
malized in the previous section. The eye-gaze features and the
multi-modal integration model are the same, but here the acous-
tic features are re-designed. Multi-channel acoustic signals are
enhanced for each participant by delay-and-sum beamforming.
The enhanced signal is used to calculate the acoustic features as
follows:

1. The number of time frames of the utterance segment cal-
culated from the diarization result

2. MFCC parameters (12-MFCCs and 12-∆MFCCs) [29]

3. Power (and ∆Power)

4. Regression coefficients of fundamental frequency (F0)
and power at the end of the preceding utterance [32]

Logistic regression models are trained to predict three events:
backchannels, utterances other than backchannels, and noise.
For each utterance segment as a result of diarization, cumula-
tive likelihoods are calculated by the three models, and they are
normalized so that the sum of the three is one. The eliminated
utterance segments are determined by the thresholding opera-
tion with a sum of the posterior probabilities on backchannels
and noise.

5. Experimental evaluations
The proposed methods are evaluated using the corpus of poster
conversations mentioned in Section 2.

5.1. Setup

Logistic regression models were trained separately for the pre-
senter and the audience by cross-validation of the eight sessions.
To evaluate one session, the other seven sessions were used
for training. In the proposed multi-modal method, the SVM
to determine the number of sound sources and the entropy hc

of a clean acoustic environment were estimated with the train-
ing data. The constrained range of the MUSIC spectrum of the
acoustic features was 10 degrees (θB = 10◦). This setting was
intended to prevent overlapping between the participants. Since
the MUSIC spectrum was calculated every 1 degree, the dimen-
sion of the acoustic features was 21. The scope to calculate
the duration and Uni- and Bi-gram of the eye-gaze features was
1,000 ms (C = 1, 000). Frame rates per second of the acoustic
and eye-gaze features are 62.5 and 29.5, respectively. Conse-
quently, an interpolation using the nearest samples was done to
the eye-gaze features. The ideal weight coefficient αc (Eq. (2)
) in a clean environment was set to: 0.9 for speaker diarization
and 0.8 for detection of backchannels.

To evaluate performance under ambient noise, we prepared
audio data by superimposing a diffusive noise recorded in a
crowded place on the audio signals. SNRs were set to 20, 15,
10, 5 and 0 dB. In real poster sessions carried out in academic
conventions, the SNRs are expected to be around 0 to 5 dB.

5.2. Speaker diarization result

We compared the proposed multi-modal method with other
methods listed below:

1. baseline MUSIC [21]
This method conducts peak tracking of the MUSIC spec-
trum and GMM-based clustering in the angle domain.
Each cluster corresponds to a participant. This method
does not use any cue from visual information.

2. baseline + location constraint [35]
This method also performs peak tracking of the MUSIC
spectrum, and compares the detected peak with the esti-
mated head location within the ±θB range. If this con-
straint is not met, the hypothesis is discarded.

3. acoustic-only model
This method fixes the weight coefficient α to 1 in Eq.
(1), and uses only the acoustic information.

For an evaluation measure, Diarization Error Rate
(DER) [36] was used in this experiment. DER consists of False
Acceptance (FA), False Rejection (FR), and Speaker Error (SE)
as below:

DER =
#FA +#FR +#SE

#S ,

where #S is the number of speech frames in the reference data.
This metric does not evaluate ± 250 ms collars of the reference
utterance segments. We evaluated the minimum DER by vary-
ing the threshold for Eq. (1) after smoothing (hangover) the
detected utterance segments.

Table 2 lists DERs for each SNR. The two baseline meth-
ods (baseline MUSIC and baseline + location constraint)
showed lower accuracy than the stochastic methods (acoustic-
only model and multi-modal model) because the baseline meth-
ods are rule-based and not robust against dynamic changes
of the MUSIC spectrum and participants’ locations. Com-
pared with the acoustic-only model, the proposed multi-modal
model achieved higher performance under the noisy environ-
ments (SNR = 5, 0 dB). Thus, we can see the effect of the
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Table 2: Evaluation of speaker diarization (DER [%])

method SNR [dB]
∞ 20 15 10 5 0 average

baseline MUSIC [21] 16.94 23.14 31.66 47.92 67.03 88.80 45.92
baseline + location constraint [35] 8.34 14.45 22.31 36.09 55.80 78.05 35.84
acoustic-only model eq. (1) w/o gi,t 6.16 7.28 9.36 14.20 22.94 35.89 15.97
multi-modal model eq. (1) 6.27 7.81 9.96 13.69 18.18 21.61 12.92

Table 3: Evaluation of audience’s speech detection (EER [%])

method SNR [dB]
∞ 20 15 10 5 0 average

no post-processing 13.37 15.80 17.86 20.86 25.77 31.80 20.91
thresholding with utterance duration 15.95 17.60 18.64 20.38 24.74 30.81 21.35
acoustic-only model eq. (1) w/o gi,t 12.14 13.98 15.47 18.19 23.34 30.20 18.89
multi-modal model eq. (1) 12.23 14.11 15.42 18.29 23.07 29.72 18.80

eye-gaze information under noisy environments expected in real
poster sessions.

We also manually tuned the weight coefficient α in Eq. (1)
where the stepping size was 0.1. In the clean environment (SNR
= ∞ dB), the optimal weight was 1.0. On the other hand, in the
noisy environments (SNR = 5, 0 dB), the optimal weights were
0.6 or 0.5. These results suggest that the weight of eye-gaze fea-
tures is adequately increased in noisy environments. The aver-
age DER by the manual tuning was 11.78%, which was slightly
better than the result (12.92%) by the automatic weight esti-
mation (Eq. (2)). Therefore, the automatic weight estimation
works reasonably according to the acoustic environment.

5.3. Effect of backchannel detection

The diarization result was post-processed by another model for
elimination of backchannels and noise. In this experiment,
backchannel segments in the reference data were regarded as
non-speech events. We compared the following methods, which
were applied after the proposed multi-modal diarization method
(last row of Table 2).

1. thresholding with utterance duration
A threshold in this method is the duration of each utter-
ance segment since the duration of backchannels is usu-
ally shorter than others. This corresponds to using only
the first feature listed in Section 4.

2. acoustic-only model
This method uses the acoustic features listed in Section
4 to detect backchannels and noise.

3. multi-modal model
This method also uses the eye-gaze features in addition
to the acoustic features.

The thresholds in the detection of backchannels were empir-
ically determined to: 800 ms for thresholding with utterance
duration and 0.8 for the posterior probabilities in acoustic-only
model and multi-modal model.

Here, we focused on substantial utterances by the audience
for efficient access to the recordings. Since there are rarely over-
lapping utterances other than backchannels, we measured Equal
Error Rate (EER) where False Acceptance Rate (FAR) equals to
False Rejection Rate (FRR). FAR and FRR are defined as:

FAR =
#FA
#NS ,

FRR =
#FR
#S ,

Figure 2: Poster session browser

where #NS is the number of non-speech frames in the refer-
ence. EER was calculated by varying the threshold in speaker
diarization.

Table 3 lists EERs for each SNR. Compared to the case
without post-processing (no post-processing), the proposed
multi-modal model significantly reduced EERs. This shows
the effectiveness of elimination of backchannels and noise after
speaker diarization. The simple thresholding method (thresh-
olding with utterance duration) reduced EERs in noisy condi-
tions, but degraded in clean conditions. It is difficult to detect
backchannels only with the utterance duration. The effect of the
eye-gaze features is also confirmed under noisy environments
(SNR = 5, 0 dB).

6. Conclusions
We have proposed a multi-modal speaker diarization method
which integrates eye-gaze information with acoustic informa-
tion. Moreover, the diarization result is enhanced by eliminating
backchannels and falsely accepted noise. The stochastic multi-
modal scheme improved the performance of speaker diarization
and the effect of eye-gaze information is confirmed under noisy
environments, which are expected in real poster sessions.

For an application to visualize the diarization results, we
developed a poster session browser (Figure 2), which can be
executed on Web browsers. This application enables us to effi-
ciently review the meaningful utterances such as questions and
comments, together with the interaction level from the detected
backchannels and eye-gaze events in the poster conversation.
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