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Abstract
We present a novel speaker diarization method by using eye-
gaze information in multi-party conversations. In real environ-
ments, speaker diarization or speech activity detection of each
participant of the conversation is challenging because of distant
talking and ambient noise. In contrast, eye-gaze information is
robust against acoustic degradation, and it is presumed that eye-
gaze behavior plays an important role in turn-taking and thus
in predicting utterances. The proposed method stochastically
integrates eye-gaze information with acoustic information for
speaker diarization. Specifically, three models are investigated
for multi-modal integration in this paper. Experimental eval-
uations in real poster sessions demonstrate that the proposed
method improves accuracy of speaker diarization from the base-
line acoustic method.
Index Terms: speaker diarization, multi-modal interaction,
eye-gaze

1. Introduction
Analysis of multi-party interaction such as meetings and con-
versations has been studied in recent years [1, 2]. In multi-party
conversations, participants convey various information via not
only verbal communications but also nonverbal channels. Non-
verbal channels include back-channels, nodding, and eye-gaze
behavior. Taking account of these factors makes conversation
structures complicated, but these behaviors of participants pro-
vide an important cue in analyzing conversations.

We have been conducting a project focusing on conversa-
tions in poster sessions (= poster conversations) in which a pre-
senter makes an interactive presentation to a small audience.
This conversation form is the norm in academic conventions in-
cluding InterSpeech conferences. To analyze poster conversa-
tions, we have designed a multi-modal recording environment
equipped with a microphone array and cameras, called smart
posterboard [3]. We have investigated turn-taking behavior [4]
and also interest and comprehension levels of audience [5] in
poster conversations by combining multi-modal information.

This work addresses speaker diarization, that is to identify
“who spoke when” in multi-party conversations. Until now, a
number of methods have been investigated [6, 7], but they are
mainly based on acoustic information input from single or mul-
tiple microphones. However, the performance of speaker di-
arization is drastically degraded by distant talking and ambient
noise in real environments. In addition, participants of poster
conversations do not sit still unlike meetings, which means that
the participants can make utterances as they move. This makes
it difficult to localize the speakers. In natural conversations,
moreover, utterances are spontaneous, sometimes ambiguous or
overlapping with others. Especially in poster conversations, ut-
terances of the audience are fewer in frequency, which means

that it is difficult to constitute separation filters like indepen-
dent component analysis [8] while the audience’s utterances are
more important and should not be missed.

In this paper, we propose a novel approach to speaker di-
arization which integrates eye-gaze information with acoustic
information. Eye-gaze behavior plays an important role of turn-
taking in multi-party conversations. For example, it is often ob-
served that a speaker ends utterance by looking at an audience
and a person looks back as he takes a turn to speak, by which
the speaker and the listener exchange their roles [9]. Thus, it is
presumed that eye-gaze behavior is related with utterance pre-
diction [5, 10], but the effect of eye-gaze information on speaker
diarization has not been seriously investigated. Since eye-gaze
information is free from the above-mentioned adversary acous-
tic condition, it is expected to complement acoustic processing.

The rest of this paper is organized as follows. Section 2
introduces the corpus of poster conversations and its annotation.
Section 3 gives a baseline method and features of the acoustic
and eye-gaze information. Section 4 presents three models for
multi-modal integration of the acoustic and eye-gaze features.
Experimental evaluations of the proposed method are presented
in Section 5. Section 6 concludes this paper with discussions of
the proposed method.

2. Multi-modal corpus of poster
conversations

The smart posterboard system we are developing consists of
a 19-channel microphone array, Kinect sensors, and HD cam-
eras, which are attached to the top or the side of a large LCD
[3]. With this setting, four poster sessions were recorded, in
which the presenters and audiences are different from each
other. In each session, one presenter made a poster presenta-
tion on his/her academic research, and there was an audience of
two persons, standing in front of the poster and listening to the
presentation. The duration of each session is 20 to 30 minutes.
Speaker diarization is to be conducted with the sensors (the mi-
crophone array and Kinect) attached to the posterboard, so the
participants do not have to wear any devices.

For the ground truth annotation of the data used in this
work, speech data were also recorded with wireless head-set
microphones, and eye-gaze information was captured by mag-
netometric sensors.

Table 1 summarizes the statistics of the utterances in the
four sessions. It is observed that the presenter holds a major-
ity of the turns. In contrast, the utterances by the audience are
not frequent, which means it would be difficult to detect these
utterances accurately.
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Table 1: Statistics of utterance duration [sec.]
presenter audience total

session 1 1,343 165 124 1,632
session 2 1,229 134 118 1,481
session 3 1,205 106 268 1,579
session 4 1,208 216 136 1,560

total 4,985 621 646 6,252

3. Baseline acoustic method and eye-gaze
features

First, we design acoustic and eye-gaze features for speaker di-
arization.

3.1. MUSIC spectrum for acoustic features

The speaker diarization method is implemented based on a Di-
rection Of Arrival (DOA) estimator [11]. Here, we adopt the
MUltiple SIgnal Classification (MUSIC) method [12]. The
MUSIC method is able to detect multiple DOA simultaneously,
and it has been applied to sound source localization in real en-
vironments [13].

The MUSIC spectrum is given by

PMU (θ) =
||t(θ)||2∑M

i=N+1 |tH(θ) ei|2 ·

(1)

Note that θ is an angle between the microphone array and the
target of estimation, t(θ) is the steering vector, ei is the eigen
vector obtained by the eigen-value decomposition of the cor-
relation matrix of the observation signals, N and M are the
number of sound sources and microphones respectively, and tH

denotes the conjugate transpose of the vector t. The MUSIC
spectrum PMU (θ

∗) has a peak at an angle θ∗ where a sound
source is located or a participant makes an utterance. The base-
line method conducts speaker diarization by peak tracking of
the MUSIC spectrum.

We can make use of visual information on the participants’
location (θ̂) tracked by the cameras or the magnetometric sen-
sors. The possible location of speakers is constrained within
a certain range (±θB) from the visually-detected location. We
parameterize the acoustic features which consist of the MUSIC
spectrum in neighboring angles of the detected participant’s lo-
cation. It is represented as

a =
(
PMU (θ̂ − θB) · · · PMU (θ̂) · · · PMU (θ̂ + θB)

)T

. (2)

3.2. Eye-gaze features

Detection of eye-gaze is approximated by detection of head ori-
entation, and it is done by using images (color and time-of-
flight) captured by the Kinect sensors. First, the face of the
participant is detected and then head model is applied and ad-
justed. Tracking of the head orientation is done by a particle
filter [14]. The object of eye-gaze is determined by the head-
orientation vector and the location of the objects. In this study,
the eye-gaze object is limited to the poster and other partici-
pants.

The eye-gaze features for speaker diarization are designed
based on the object of the eye-gaze and joint eye-gaze events by
the presenter and the audience. The eye-gaze feature vector g
consists of the followings based on the previous work [4] :

1. Eye-gaze object
This feature represents which object the participant looks
at in the time frame. For the presenter, (P) poster or (I)
audience; For (anybody in) the audience, (p) poster, (i)
presenter, or (o) other person in the audience.

2. Joint eye-gaze event: “Ii”, “Ip”, “Pi”, “Pp”
Combination of the eye-gaze objects by the presenter and
the audience. These events are defined for each person
in the audience.

3. Bigram of joint eye-gaze events:
This feature represents the transition of the joint eye-
gaze events.

4. Duration of the above 1. (for (I) and (i))

5. Duration of the above 2. (except for “Pp”)

These features are calculated for each time frame and the dura-
tion is measured during the preceding period (the preceding C
seconds).

4. Combination models of acoustic and
eye-gaze information

This section presents three models to combine eye-gaze infor-
mation with acoustic information. The acoustic and eye-gaze
features are calculated for each participant, and regarded as
stochastic variables. Then, speaker diarization is conducted
based on a probabilistic framework, which predicts utterances
of each participant independently.

Let a, g, and v be stochastic variables of the acoustic fea-
tures, the eye-gaze features, and the event of utterance, respec-
tively. Note that the two variables, a and g, are represented
by the feature vectors described in Section 3, and the utterance
variable v is binary, speaking (v = 1) or not-speaking (v = 0).

4.1. Model 1 (Joint discriminative model)

A joint discriminative model is designed to predict the follow-
ing posterior probability

p(v|a, g). (3)

In this work, we adopt Logistic Regression (LR) model to di-
rectly compute this probability.

4.2. Model 2 (Independent discriminative models)

Independent discriminative models are designed by assuming
that the two variables (a and g) are independent. The posterior
probabilities computed by the two models are linearly interpo-
lated,

α p(v|a) + (1− α) p(v|g). (4)

The parameter α is the weighting coefficient. Each discrimina-
tive model is implemented by LR.

4.3. Model 3 (Noisy channel model)

The posterior probability p(v|a, g) can be developed by the
Bayes’ theorem as

p(v|a, g) =
p(a|v, g) p(v|g)

p(a|g) (5)

=
p(a|v) p(v|g)

p(a)
(6)
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when we assume that the two variables (a and g) are indepen-
dent. The denominator can be ignored for the decision, so we
can get a likelihood as

l(v|a, g) = p(a|v) p(v|g). (7)

The generative model to compute p(a|v) is realized by Gaussian
Mixture Model (GMM). The model to compute p(v|g) is same
as the discriminative model (LR) in Model 2, but in this case,
it is regarded as a predictive model just like language model
in automatic speech recognition (ASR). Just like ASR, we take
the logarithm of the above likelihood, and an additional weight
parameter β is introduced to control the difference in their dy-
namic range,

ll(v|a, g) = log p(a|v) + β log p(v|g). (8)

Speech activity detection is based on the difference of log like-
lihood ll(v|a, g) as

ll(v = 1|a, g)− ll(v = 0|a, g)
{

≥ Θll speaking
< Θll not-speaking (9)

where the parameter Θll represents the threshold.

5. Experimental evaluations
We compared the proposed method with the baseline method
and other methods by using the corpus of poster conversations.

5.1. Setup

The sampling rate of speech was 16 kHz. The frame size for
the MUSIC spectrum was 32 ms, and the frame shift was 16
ms. The block size of MUSIC was 5. In this experiment, the
MUSIC spectrum was computed by using the 19-channel audio
signals.

The constrained range of the MUSIC spectrum in the acous-
tic features was 10 degrees (θB = 10◦). This setting was in-
tended to prevent the ranges overlapping between the partici-
pants. The MUSIC spectrum was calculated every 1 degree,
thus the dimension of the acoustic features was 21. The scope
to calculate the duration in the eye-gaze features was 10 seconds
(C = 10).

The GMM and LR were trained by cross-validation of the
four sessions, while the mixture size of GMM was fixed to 8.
The weight coefficients in Model 2 and Model 3 (α and β)
were subsequently determined in the cross-validation manner.
To evaluate one session, other three sessions were used to train
the GMM and LR and to determine the weight coefficients.

We made comparison of the three models described in Sec-
tion 4 as well as other methods listed below:

1. Baseline MUSIC
The baseline method conducts peak tracking of the MU-
SIC spectrum and GMM-based clustering in the angle
domain. Each cluster corresponds to each participant.
This method does not use any cue from visual informa-
tion.

2. Baseline + location constraint
This method also performs peak tracking of the MUSIC
spectrum and incorporates constraint on the participants’
location obtained by the image processing, which was
described in Section 3. The detected peaks are adopted
if they are consistent with the estimated location within
the θB range.

Table 2: 11-point average precision for presenter

Method SNR
clean 20 dB 15 dB 10 dB

Baseline MUSIC 0.887 0.938 0.886 0.883
Baseline + location 0.870 0.870 0.871 0.868
Acoustic-only LR 0.943 0.942 0.942 0.943
Model 1 0.943 0.941 0.942 0.943
Model 2 0.944 0.940 0.942 0.944
Model 3 0.952 0.950 0.949 0.949

Table 3: 11-point average precision for audience

Method SNR
clean 20 dB 15 dB 10 dB

Baseline MUSIC 0.199 0.175 0.169 0.167
Baseline + location 0.276 0.277 0.276 0.264
Acoustic-only LR 0.419 0.424 0.403 0.365
Model 1 0.350 0.342 0.327 0.307
Model 2 0.414 0.430 0.426 0.412
Model 3 0.476 0.485 0.472 0.452

3. Acoustic-only LR model
This model does not use the eye-gaze information in
Model 1 and Model 2, and only uses the acoustic infor-
mation of the MUSIC spectrum to compute p(v|a) with
LR.

To evaluate performance under ambient noise, we prepared
audio data with ambient noise. This was done by superimpos-
ing the 19-channel audio signals on a diffusive noise actually
recorded in a crowded place. Signal-to-Noise Ratios (SNRs)
were 20, 15, and 10 dB.

5.2. Results and discussion

To evaluate the performance of speaker diarization, precision
and recall are computed as

Precision =
#TP

#TP +#FP ,

Recall =
#TP

#TP +#FN ,

where TP, FP, and FN stand for true positive, false positive,
and false negative, respectively. In addition, 11-point average
precision was also calculated. This is the mean value of in-
terpolated precision on a fixed 11 recall points from 0 to 1:
{0, 0.1, 0.2, · · · , 0.9, 1.0}.

Figure 1 and Figure 2 show the precision-recall curves for
the presenter and audience, respectively, under the clean speech
data. The results under ambient noise (SNR = 10 dB) are shown
in Figure 3 and Figure 4. The curves were obtained by varying
the thresholds in (3), (4), and (9). Table 2 and Table 3 list 11-
point average precision for the presenter and audience.

As shown in these results, detection of the presenter’s
speech is easy because the presenter stands close to the micro-
phones and speaks in most of the session. All the methods show
similar high performance, and there are no significant differ-
ences among them, expect baseline+location lowers recall due
to the location errors.
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Figure 1: Precision-recall curve for presenter (Clean speech)
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Figure 2: Precision-recall curve for audience (Clean speech)

Detection of speech by the audience is more difficult and
the performance is much lower because of distant talking and
infrequency of the utterances. In this case, the proposed Model
2 and Model 3 outperform the other methods. Especially under
ambient noise, superiority of the models drastically increases.
This result demonstrates that eye-gaze information contributes
to improvement of diarization accuracy in real-world conversa-
tions.

Among the proposed three models, Model 1 has lower
performance than the other models and the acoustic-only LR
model. This suggests that the two variables (a and g) should be
dealt independently. Model 3 shows higher performance than
Model 2. It is easier to estimate the generative model of the
acoustic features than the discriminative model with a limited
size of training data.

Among the three reference methods, the acoustic-only LR
model shows higher performance than the baseline MUSIC and
baseline+location. This result indicates the effectiveness of the
machine learning approach on this diarization problem. How-
ever, the robustness of the machine learning including the pro-
posed methods needs to be investigated.

All the results shown here are based on automatic measure-
ment of the eye-gaze features or head orientations. The mean
errors of the estimated participants’ locations and head orienta-
tions were 12.2 millimeters and 5.21 degrees respectively. The
degradation by using the automatically detected eye-gaze infor-
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Figure 3: Precision-recall curve for presenter (SNR = 10 dB)
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Figure 4: Precision-recall curve for audience (SNR = 10 dB)

mation from the oracle information measured by the magneto-
metric sensors is about 1-3%.

6. Conclusions
This paper has proposed a novel approach to speaker diariza-
tion in multi-party conversations by combining acoustic and
eye-gaze information. We presented the three models to com-
bine the eye-gaze features with the acoustic features. From the
experimental results, the proposed method achieved significant
improvement of diarization accuracy especially for the audi-
ence’s utterances.
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