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Abstract
In this paper, we propose speech emotion recognition (SER)
combined with an acoustic-to-word automatic speech recogni-
tion (ASR) model. While acoustic prosodic features are primar-
ily used for SER, textual features are also useful but are error-
prone, especially in emotional speech. To solve this problem,
we integrate ASR model and SER model in an end-to-end man-
ner. This is done by using an acoustic-to-word model. Specif-
ically, we utilize the states of the decoder in the ASR model
with the acoustic features and input them into the SER model.
On top of a recurrent network to learn features from this in-
put, we adopt a self-attention mechanism to focus on impor-
tant feature frames. Finally, we finetune the ASR model on
the new dataset using a multi-task learning method to jointly
optimize ASR with the SER task. Our model has achieved a
68.63% weighted accuracy (WA) and 69.67% unweighted accu-
racy (UA) on the IEMOCAP database, which is state-of-the-art
performance.
Index Terms: speech emotion recognition, acoustic-to-word
speech recognition, end-to-end, self-attention mechanism,
multi-task learning

1. Introduction
Speech communication between humans and machines is be-
coming more common in our daily lives. With the advancement
of automatic speech recognition (ASR) technology, there is a
growing demand for speech emotion recognition (SER) as well.
By using emotion detection, machines can communicate and
interact with humans more appropriately and naturally. There-
fore, SER has become an important part in human-machine in-
teraction [1, 2].

In SER, feature extraction from speech is an important is-
sue. Traditional methods, such as OpenSmile [3], used some
statistical functions to extract relevant emotional features from
prosodic features. With the rise of deep learning, which can
learn feature extraction from source data, the recurrent neural
network (RNN), convolutional neural network (CNN) [4], and
recently self-attention mechanism [5] have been widely applied
to the SER task.

In [6], a deep neural network (DNN) with an extreme learn-
ing machine (ELM) is used to learn SER tasks. In [7], a method
for feature pooling with local attention is used. In [8], convo-
lutional recurrent neutral network (CRNN) is used to capture
emotional information from speech. In [9], a spectrogram in
mel-scale is used as input features for CNN and LSTM [10]
with a structured self-attention mechanism [11]. In [12], self-
attention and global windowing systems are used to predict
emotion labels. Besides, some other researchers used not only
speech data but also transcripts [13, 14, 15]. Generally, these
SER models using speech and transcript data perform better
than speech-only models, and achieved accuracy over 70%. In

[16], an RNN is used to train the speech and text data individu-
ally, and the model predicts the label based on the concatenated
vector. In [15], bi-directional LSTM (Bi-LSTM) with multi-hop
attention is used to extract features from speech and text data.

In practical situations, however, input speech needs to be
automatically transcribed to get the textual information. How-
ever, ASR of emotional speech is very challenging and results in
high error rates. To make SER robust against ASR errors, in this
paper, we propose an SER model combined with an acoustic-
to-word ASR model [17]. The model is enhanced with the self-
attention mechanism, and then the multi-task learning method
is applied to finetune the ASR model. We propose an ASR fea-
ture, which is the hidden state of the decoder in the ASR model,
to replace the textual data in the SER model. As a result, our
model is a speech-only ASR-SER model but has a performance
that is close to that of the models using speech and text data.
Combined with the self-attention mechanism to deal with the
acoustic features and the ASR features separately, our ASR-
SER model is much better. By using multi-task learning, the
ASR model can be finetuned, and the SER models can get more
accurate ASR features to improve the recognition performance.
The results reach 68.63% WA and 69.67% UA.

We describe the ASR model in Section 2, some baseline
models in Section 3, and our proposed method in Section 4.
Section 5 presents the system configuration and evaluation re-
sults. Finally, we give conclusions in Section 6.

2. Baseline models
To realize high-performance SER, we exploit the information
from audio and transcripts. To better utilize the sequence in-
formation, we adopt a recurrent neural network. LSTM with
multi-head self-attention is a sophisticated structure for feature
learning for SER. We prepared three baseline models, which
have a very similar structure and extract information from au-
dio, transcripts, or both.

2.1. Audio-based, text-based, and combined model

Figure 1 shows our three baseline models of SER. Figure 1(a)
is the audio-based SER model with acoustic features as in-
puts. The Bi-LSTM network encodes the input acoustic fea-
tures X and outputs a sequence of hidden states HX =
(h1,X , ..., hT,X).

ht,X = Recurrency(ht−1,X , xt) (1)

Then, HX is fed into the self-attention mechanism, which
we will describe in the next section. Finally, the output vector
of the self-attention layer is fed into a fully connected layer with
the ReLU activation function.

Similarly, Figure 1(b) shows the text-based SER model with
textual data as inputs. Textual data is first fed into the word
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(a) audio-based model (b) text-based model (c) combined model

Figure 1: Architecture of three baseline models for SER

embedding layer, and then the remaining part of the model is
the same as the audio-based model. HW = (h1,W , ..., hL,W )
is the output of the Bi-LSTM network in the text-based model,

hl,W = Recurrency(hl−1,W , wl) (2)

Figure 1(c) shows the combined SER model with both
acoustic features and textual data as inputs. Based on the above
two baseline models, we concatenate the two output vectors
from the self-attention layer of the textual data and the acous-
tic features, and then feed the concatenated vector into a fully
connected layer with the ReLU activation function.

2.2. Multi-head self-attention model

Li et al. [9] demonstrated that the self-attention structure is ef-
fective for SER. We adopt a structured self-attention network
[11] following the Bi-LSTM layer to extract features from hid-
den states H and output fixed-length vector M . We set W1 and
w2 as trainable parameters, and the attention mechanism out-
puts a vector of weights ai:

ai = softmax(w2,itanh(W1H
T )) (3)

In this work, we use a multi-head structure. We concatenate
all of the weighted sums of hidden states to get fixed-length
vector M as output.

M = Concat(head1, ..., headn) (4)

headi = aiH (5)

3. Acoustic-to-word ASR model
End-to-end speech recognition is a sequence-to-sequence prob-
lem. Generally, there are two main methods: connectionist tem-
poral classification (CTC) [18] and the attention-based encoder-
decoder model [19, 20, 21]. In this study, we use the hidden
state of the ASR decoder as input for the SER part, and the
attention-based encoder-decoder model is more suitable than
the CTC model. The acoustic-to-word ASR model can provide
the representation of word-level recognition most related to the
content of speech. Thus, we choose the acoustic-to-word model
to pre-train the ASR model.

We denote a length T sequence of input acoustic features as
X = (x1, x2, ..., xT ), a length L sequence of the output word
labels as W = (w1, w2, ..., wL). The encoder transforms the
acoustic features into context vectorH = (h1, h2, ..., hT ). The

decoder transforms the context vector into the target words. At
the l-th decoding step, hidden state sl of the decoder is:

sl = Recurrency(sl−1, gl, wl) (6)

where gl denotes the context vector, and wl means the current
predicted label, which will be utilized in the recurrent network.
The formula that calculates the context vector is as follows:

gl =

T∑
t=1

al,tht (7)

where a is the location-based attention, which is formulated as
follows:

fl = F ∗ al−1 (8)

el,t = zT tanh(Zsl−1 + V ht + Ufl + b) (9)

al,t = softmax(el,t) (10)

where F is the parameters of a 1-dimensional convolution,
zT ,Z,V ,U are the parameters of fully connected layer. Based
on the formula above, we can predict the next label wl:

wl ∼ Generate(gl, sl) (11)

4. End-to-end ASR and SER
4.1. Integration of acoustic-to-word ASR model to SER

The performance of SER will be better when we utilize the in-
formation from both the audio and transcripts. We use the pre-
trained ASR model to replace the text input in the SER com-
bined model in Figure 1(c). Instead of using word embedding
as the input of the SER model, we use the hidden state of the
ASR decoder sl, which we call ASR feature. In the acoustic-
to-word ASR, they are fed into the last fully connected layer to
calculate the probability of each word. In our model, we use
the ASR features as the input of the Bi-LSTM layers to retrieve
the textual information. The ASR features can be more robust
than the text output of ASR, which is error-prone, and they have
a close representation to the ground-truth text. The formula of
the Bi-LSTM encoder is changed as follows:

hl,W = Recurrency(hl−1,W , sl) (12)

As shown in Figure 2, the framework of our proposed
model includes two Bi-LSTMs, a self-attention mechanism, and
several fully connected layers with the function of concatenat-
ing ASR features with the acoustic features. The ReLU activa-
tion function and softmax nodes are used for the final decision.
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Figure 2: Our proposed end-to-end speech emotion recognition
combined with acoustic-to-word speech recognition model

The process can be done step by step. First, the acoustic-
to-word ASR model is pre-trained. Then, we combine the ASR
model with the SER model. The SER model gets input from
acoustic features and ASR features, and the Bi-LSTM and self-
attention mechanism process these two kinds of features sep-
arately. Finally, after concatenating these two output vectors
from the self-attention mechanism, we use the softmax output
layer to predict the probability of emotion categories. The entire
network is trained with the cross-entropy criterion.

4.2. Joint learning of ASR and SER

The acoustic-to-word ASR model can be finetuned on the
matched dataset to adjust to the new environment, and we adopt
multi-task learning to optimize the joint loss:

L = λLASR + (1− λ)LSER (13)

We denote LASR and LSER as the losses for speech recog-
nition and emotion classification, and λ represents the weights
of the first task. We use the cross entropy as a loss function to
calculate the losses for LASR and LSER. When λ is close to 0,
the model will pay more attention to SER.

5. Experiments
5.1. Database

We used two databases in our experiments: the interactive emo-
tional dyadic motion capture database (IEMOCAP) [22] and
Librispeech database [23]. IEMOCAP contains approximately
12 hours of speech, which consists of improvised and scripted
scenarios. There are 10 actors (5 males and 5 females) to per-
form 5 dyadic sessions, with 10 emotions (angry, happy, sad,
neutral, frustrated, excited, fearful, surprised, disgusted, and
other), which have been evaluated by at least three different an-
notators. Librispeech is a corpus of approximately 1000 hours
of speech sampled at 16 kHz, whose training data contains three
subsets, with an approximate size of 100, 360, and 500 hours.
We utilize the total 960 hours of training data for pre-training
the acoustic-to-word ASR model.

5.2. Data preprocessing

For the IEMOCAP database, to compare our work with that of
others, we combine happy and excited emotions into the happy

category, so we have 4 categories of happy, sad, neutral, and
angry. Some utterances longer than 20 seconds are too long for
multi-task learning, thus we do not use them. Therefore, we use
a total of 5515 utterances, and the numbers of emotional utter-
ances of happy, sad, neutral, and angry are 1633,1074,1707, and
1101 respectively. We also prepare another dataset that consists
of improvised speech data with happy, sad, neutral, and angry
categories, a total of 2274 utterances. During the experiments,
we use 5-fold cross-validation to train our model in keeping
with prior work.

We use a 120-dimensional feature vector of 40-channel log
mel-scale filter bank (lmfb) outputs as input features. For fea-
tures used in ASR, we apply non-overlapping frame stacking to
them. For features used in SER, we do not apply frame stacking
to the acoustic features, which constitute a 40-dimensional fea-
ture vector of 40-channel lmfb. Besides, following [9] we set
the maximal length of the utterance to 7.5 seconds. Long utter-
ances (over 7.5 seconds) are cut at 7.5 seconds from the start,
and short utterances are padded with zeros.

5.3. System configuration

The encoder of the acoustic-to-word ASR model has five layers
of Bi-LSTM with 320 cells. The decoder consists of a location-
based attention mechanism, a hidden layer with tanh activation
function, one layer of LSTM with 320 cells, and an output with
softmax function. During the decoding step, we use a beam
search method with a beam width of 4.

In the ASR-SER model, we use the ASR features and
acoustic features as input. Our SER model consists of 2 layers
of Bi-LSTM with 256 cells, a self-attention mechanism with 8
heads and 512 nodes to retrieve information from the ASR fea-
tures and acoustic features separately, 1 fully connected layer
with 2048 nodes that uses concatenated vector from the self-
attention layers, a ReLU activation layer, and an output layer
with softmax function.

We adopt the Adam method to optimize the parameters,
whose learning rate is 10−4 and weight decay is 10−5. The
gradients are clipped with a threshold of 1.0. The dropout of
each Bi-LSTM is 0.2. The batch size is set to 20, and the maxi-
mum number of epochs is 60. We set λ to 0.2 in the multi-task
learning, which means we pay more attention to the SER task.

The parameter settings in the three baseline SER models are
the same as that in the ASR-SER model, except that the word
embedding layer in the text-based model and combined SER
model has 300 dimensions.

5.4. Results

Table 1 shows the results of our baseline SER models intro-
duced in Section 3. We used a 5-fold cross-validation method
to train the SER model, which is speaker-independent. Besides,
we have used a pipeline method for the text-based model and
combined SER model, which used the output text of the pre-
trained ASR model instead of the ground-truth text. We used
the word error rate (WER) to evaluate the ASR performance
and used the weighted accuracy (WA) and unweighted accuracy
(UA) to evaluate the performance of SER.

The WER of the ASR model on the Librispeech test set is
14.9%. When we apply the ASR model directly to the IEMO-
CAP dataset, the WER is 40.7% because the IEMOCAP dataset
is spontaneous, emotional, and mismatched to Librispeech .

The audio-based SER model achieves a WA of 55.7%, text-
based SER model achieves a WA of 63.7%, and combined SER
model achieves a WA of 68.9%. The combined SER model
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Table 1: SER model results comparison

Model WA UA WER

Audio-based 55.7% 57.0% -
Text-based 63.7% 63.6% -
Text-based (ASR transcripts) 51.0% 50.7% 40.7%
Combined 68.9% 69.4% -
Combined (ASR transcripts) 60.1% 60.7% 40.7%
ASR-SER model 68.6% 69.7% 35.7%

Table 2: ASR-SER model results comparison

Model WA UA WER

Mirsamadi et al.[7] (2017) 63.5% 58.8% -
Luo et al.[8] (2018) 60.4% 64.0% -
Dai et al.[24] (2019) 65.4% 66.9% -
Tarantino et al.[12] (2019) 68.1% 63.8% -
Ours
ASR-SER model 68.6% 69.7% 35.7%

shows a significant performance gain for emotion classifica-
tion of 13.2% and 5.1% with respect to the audio-based and
text-based SER model, respectively. The combined model ap-
parently extracts more information from the input data. When
evaluated on ASR transcripts, however, the accuracies of text-
based SER model and combined SER model are significantly
degraded to 51.0% and 60.1%. The low performance of the
ASR model may lead to a lower performance of the SER model
when using the ASR transcripts directly. On the other hand, us-
ing the proposed ASR features instead of the ASR transcripts as
shown in the last row is effective.

Our ASR-SER model achieves a WA of 68.6%, and a UA
of 69.7%, while the WER decreases from 40.7% to 35.7%. This
means the finetuning is successful, and with more data, the
WER will be further reduced. The ASR-SER model performs
much better than the combined SER model using ASR tran-
scripts, and the results are very close to those of the combined
model using the ground-truth text. The ASR feature is robust
against ASR errors, which has a close representation to the fea-
ture of the ground-truth label, and replaces the role of word em-
bedding to some extent. Table 2 shows a comparison with prior
works. [7] proposed a method for feature pooling with local at-
tention. [8] adopted CRNN structure to learn the SER task. [24]
was a method that learned discriminative features from variable
length spectrograms by combining the softmax cross-entropy
loss with the center loss. [12] used the self-attention and global
windowing methods.

Table 3 shows the confusion matrix of the results of our
ASR-SER models on the IEMOCAP dataset. The classification
of the neutral emotion has a low performance of around 59.1%;
however, all of the other three emotions have a WA of over 70%.
It is easy to misclassify the neutral emotion to the happy emo-
tion, and it is also easy to misclassify the happy emotion to the
neutral emotion.

In Table 4, we also show the results for the improvised
dataset, which consists of improvised utterances only of the
IEMOCAP, and the experiment also used four categories:
happy, neutral, sad, and angry. Note that the performance of our
ASR-SER model is better than that of major prievious works
[25, 26].

Table 3: Confusion matrix of results of our ASR-SER model (the
dataset has a total of 5515 utterances)

Ground Truth Prediction

Happy Sad Neutral Angry

Happy 1159 81 280 113
Sad 83 752 197 42
Neutral 373 207 1009 118
Angry 105 18 113 865

Table 4: Improvised utterances only results comparison

Model WA UA WER

Lee et al.[25] (2015) 62.8% 63.9% -
Satt et al.[26] (2017) 68.8% 59.4% -
Ours
ASR-SER model 69.7% 63.1% 54.5%

Table 5: Speaker-dependent experiment of SER models

Model WA UA WER

Audio-based 66.8% 67.0% -
Text-based 66.5% 66.6% -
Text-based (ASR transcripts) 52.4% 52.1% 40.7%
Combined 73.2% 73.6% -
Combined (ASR transcripts) 65.6% 66.0% 40.7%
ASR-SER model 75.5% 76.4% 29.8%

Furthermore, we also performed an experiment on speaker-
dependent setting. The results are shown in Table 5. In this
case, the training dataset is chosen randomly from the whole
of the database in accordance with the mean proportion of each
emotion category. These results have a higher performance in
both WA, UA, and WER, and the proposed ASR-SER model
achieves the best performance.

Through Table 1 and Table 5, note that the WA and UA
in our baseline models and those in the ASR-SER model are
very close, which means our models are more stable than oth-
ers, even though the number of emotional utterances in each
category is unbalanced.

6. Conclusion
In this paper, we have proposed an end-to-end speech emo-
tion recognition (SER) model combined with an acoustic-to-
word ASR model. Our model benefits from the ASR feature
and robustly works with speech data only. The results show
our method achieves a performance that is better than that of
the conventional pipeline method and is close to the ground-
truth performance. It shows better performance than other prior
works on the IEMOCAP dataset. The code is available.1
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